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Agenda 

• Some motivation 

• Market-based credit indicators, derivatives 
pricing 

• Fundamental credit models 

• Structural (Merton) credit model 

• Portfolio models 

• Pricing structured credit 



Why do we care? 

• Lending decisions 

• Pricing credit 

• Ratings arbitrage 

• Relative value 

• Reserves policy 

• Allocating economic capital 

• Allocating regulatory capital 



MARKET CREDIT INDICATORS 



How does the market express the price 
of credit? 

• In its traditional form, credit is traded as 
bonds. 

• But bonds encompass interest rate risk as well 
as credit risk, so how to disentangle? 

• What is a better value, a government bond 
paying 2% interest or a corporate bond paying 
4%? 



Indicators of priced credit risk 

• Consider a fixed coupon bond with maturity T, 
paying annual coupon c. 

• Yield-to-Maturity (YTM) is defined in the 
normal (implicit) way in order to recover the 
market price. 

 

 

• Recall weaknesses of the YTM indicator. 

 

P = c
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Indicators of priced credit risk 

• Yield-based indicators 
– Yield spread – the difference between the YTM for 

the credit risky bond and the YTM of the closest 
benchmark government bond 

– Interpolated spread – the difference between the 
YTM for the risky bond and the interpolated 
government YTM for the actual bond maturity 

 

• These inherit the weaknesses of YTM, and do 
not generalize to more complex securities. 



Indicators of priced credit risk 

• Option-adjusted spread (OAS) or Z-spread 

– The constant spread required to add to the 
government discount curve in order to recover the 
risky bond price 

 

 

• Accounts for the coupon effect, and generalizes 
to more complex securities. 

• See O’Kane and Sen (2005) for further discussion. 

P = c

TX

i=1

exp[¡i(Zi + s)] + exp[¡T (ZT + s)]



Recall basic definitions 

• Let T denote the (random) time to default of a specific 
obligor.   

• Let P be the cumulative distribution function for T. 

• Then we have 
– Default probability 

– Survival probability 

– Unconditional probability of default between t and t+h 

 

– Conditional probability of a default between t and t+h, 
given survival until t 

 

PfT > tg= 1¡P(t)

PfT · tg = P(t)

PfT 2 (t; t+h]g= P(t+h)¡P(t)

PfT 2 (t; t + h]jT > tg = P (t+ h)¡ P (t)

1¡P (t)



Work with the simplest distribution 

• Let the default time be exponentially distributed with 
parameter ¸ 

• Then default probability is 
• Survival probability is 
• Unconditional default probability in (t,t+h] 

 
 

• Conditional default probability in (t,t+h] given survival to t 
 
 

• Conditional default rate is constant.  This is analogous to a 
constant instantaneous forward rate in interest rate 
models. 

P(t) = 1¡ exp[¡¸t]

1¡P(t) = exp[¡¸t]

P(t+h)¡P(t) = exp[¡¸t]¡ exp[¡¸(t+h)] = exp[¡¸t](1¡ exp[¡¸h])

P (t+ h)¡ P (t)

1¡ P (t)
= 1¡ exp[¡¸h]



• Default probabilities are governed ¸, the hazard rate 
 
 
(This assumption can be relaxed.) 

• Infer ¸ by assuming price is equal to its risk-free value less the expected 
loss due to default 
 
 
 
 
 
 
 

• Default probabilities have a concrete meaning and are “portable” across 
security types and markets. 

• Recall we are working under the risk-neutral measure here, so PDs embed 
the risk and liquidity premia. 

P = c

TX

i=1

e¡iZi + e¡TZT : : :

¡
TX

i=1

(P (i)¡ P (i¡ 1))(1¡R)(1 + c)e¡iZi

Implied default probabilities 
Hull and White (2005) 

PfDefault before tg= P(t) = 1¡ exp[¡¸t]



Credit Default Swaps (CDS) 

• Bilateral contract in which 
– Protection buyer pays an upfront premium (maybe), and 

then pays a periodic running premium until maturity of the 
contract 

– Protection seller pays out the default loss on a set of 
reference securities in the event of a credit event 

• Credit event definition can be controversial, but think 
of it here as default, bankruptcy or major restructuring. 

• Default loss is determined through an auction of the 
eligible securities one month after the credit event.  
Assume here that payment occurs on next premium 
date, and is simply (1¡R)(1+ c)



CDS Hidden Risks 

• Legal risk.  The protection buyer is at risk that an 
event that should be considered a default is not 
declared to be one.  Consider the case of Greece 
in 2011/2012. 

• Counterparty risk.  The protection buyer (and to 
less of a degree seller) is exposed to the risk that 
the counterparty in the transaction fails to meet 
their future obligations.  Consider the case of AIG 
in 2008. 

• We will not consider these risks in the pricing to 
follow. 



CDS pricing 

• Assume annual premium of s, maturity T. 

• Present value of protection buyer payments 

 

 

• Present value of protection seller payments 

 

 

• Price calibration entails finding ¸ such that the 
two sides of the contract are of equal value. 

Upfront + s

TX

i=1

(1¡ P (i))e¡iZi

TX

i=1

(P (i)¡ P (i¡ 1))(1¡R)(1 + c)e¡iZi



Credit Indices (CDX, iTraxx) 

• The majority of trading volume in credit derivatives is 
in index contracts 

• A contract comprises standardized 
– Maturity date, 
– Fixed premium, 
– Basket of credits 

• Protection seller compensates for default losses of 
underlying names, scaled by their weight in the basket 

• Protection buyer pays a periodic premium (spread) on 
the remaining notional amount being protected 

• Quotations are based on “fair spread” … this is 
converted to an upfront payment 



A few comments about recovery 

• Recovery rate is typically defined as the percentage of a recovery 
claim that an creditor receives after a default. 

• Typically, this is reported as a non-discounted figure, not reflecting 
the timing risk. 

• Bankruptcy proceedings can take years to complete.  Recovery that 
comes out of the end of these proceedings is referred to as ultimate 
recovery. 

• Securities continue to trade between the default date and the 
recovery date.  These form part of the market for distressed 
securities. 

• CDS are typically settled one month after the credit event, before 
the ultimate recovery is known.  An auction is held for the defaulted 
securities in order to establish the recovery rate to be used for 
settling the CDS contracts. 



Recovery data – recent CDS auctions 

• Delta Airlines (2005), 18 

• Delphi (2005), 63 

• Lehman Bros (2008), 8.6 

• Washington Mutl (2008), 57 

• Ecuador (2009), 31 

• General Motors (2009), 13 

• General Motors loans 
(2009), 98 

 

• CIT Group (2009), 68 

• Japan Airlines (2010), 20 

• AMBAC Financial (2010), 9.5 

• Dynegy (2011), 71 

• AMR (2011), 24 

• Eastman Kodak (2012), 24 

• Hellenic Republic (2012), 22 

Source:  www.creditfixings.com  

http://www.creditfixings.com/


Recovery data 

• Historical data on ultimate recovery  

• Altman and Kishore (1996), based on 
defaulted bonds from 1970-1995: 

 
  

Average 
(%) 

Std. Dev. 
(%) 

Senior Secured 57.9 23.0 

Senior Unsecured 47.7 26.7 

Senior Subordinated 34.4 25.1 

Subordinated 31.3 22.4 



Gupton and Stein (2002), data from 
1981-2000 



Altman and Kalotay (2010), data from 
1987-2006 

• Also investigate the effects of industry, 
macroeconomy, credit cycle, economic 
cushion … 

 



RATING MODELS 



Standard & Poor’s criteria 
Ratings goals (from company website) 
• We view likelihood of default as the single most important dimension of 

creditworthiness.  
• The key objective of Standard & Poor's ratings is rank ordering the relative 

creditworthiness of issuers and obligations. 
• When our ratings perform as intended, securities with higher ratings should 

display lower observed default frequencies than securities with lower ratings 
during a given test period. 

• In an indirect way, our consideration of absolute default likelihood can be viewed 
as associating "stress tests" or "scenarios" of varying severity with the different 
rating categories. We do not expect to observe constant default frequencies over 
time; we expect observed default frequencies for all rating categories to rise and 
fall with changes in economic conditions. 

• Although we strive for comparability in our ratings, we expect to observe less 
consistency in rank ordering of observed default frequencies among regions and 
market segments.  

• Only over very long periods - covering multiple economic cycles -would we expect 
to be able to observe whether similarly rated credits from different market 
segments actually experience similar long-term default frequencies. 
 



History of one-year default rates 

1980 1985 1990 1995 2000 2005 2010
0

1

2

3

4

D
e
fa

u
lt
 r

a
te

 (
%

)

 

 

1980 1985 1990 1995 2000 2005 2010
0

10

20

30

40

50

D
e
fa

u
lt
 r

a
te

 (
%

)

 

 

A

BBB

BB

B

CCC



Ratings transition matrices 

• For many modeling purposes, the probabilities of rating migration are an 
important input. 

• Transition probabilities for a given year: 

– Begin with a cohort of all issuers (or issues) in a single rating at the beginning of the year. 

– At year end, tabulate the proportion in each possible new rating, in default, and with 
rating withdrawn.  Proportion can be dollar weighted or issuer weighted. 

• To calculate transition probabilities, make an assumption about the nature of 
withdrawn ratings.   

– Good – withdrawals because debt matures, count WR as no rating change 

– Bad – withdrawal because no longer able to access capital markets, count WR as default 

– Indifferent – average of the two, normalize other transitions (condition on no WR) 

• Averaging across years … how to weight? 

– Each year’s transition experience equally 

– Dollar or issuer weighting … more weight on recent years as issuance has increased 

• Plenty of other issues related to forecasting … TTC/PIT, etc. 



Example transition matrix 

• Standard & Poor’s non-modified system, 1985-2010 

AAA AA A BBB BB B CCC Default

AAA 91.42 7.92 0.51 0.09 0.06 0 0 0

AA 0.61 90.68 7.91 0.61 0.05 0.11 0.02 0.01

A 0.05 1.99 91.43 5.86 0.43 0.16 0.03 0.04

BBB 0.02 0.17 4.08 89.94 4.55 0.79 0.18 0.27

BB 0.04 0.05 0.27 5.79 83.61 8.06 0.99 1.20

B 0 0.06 0.22 0.35 6.21 82.49 4.76 5.91

CCC 0 0 0.32 0.48 1.45 12.63 54.71 30.41

Default 0 0 0 0 0 0 0 100.00



FUNDAMENTAL MODELS 



Z-Score 

• Original study – Altman (1968) 
– Variable list … started with 22 variables grouped 

into liquidity, profitability, leverage, solvency, 
activity 

– 33 firms that filed for bankruptcy in 1946-65 … 
data from the year prior to filing (average lead 
time was about seven months) 

– 33 solvent firms selected randomly, with 
stratification to match industry and size 
distributions 



Z-Score … selected variables 

• Working capital / total assets (WC/TA) 
– Measures net liquid assets 

• Retained earnings / total assets (RE/TA) 
– Cumulative profitability 
– Implicitly penalizes young firms 
– Inversely related to leverage (high ratio means tendency to fund 

through earnings) 

• EBIT / TA 
– Earnings power of firm’s assets 

• Market value of equity / Book value of total liabilities (ME/BL) 
– Market effect (already) 
– Leverage 

• Sales / total assets (S/TA) 
– Poor power in univariate, but adds significantly in multivariate 



Univariate discriminatory power 
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Univariate discriminatory power 
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Univariate discriminatory power 
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Univariate discriminatory power 
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Univariate discriminatory power 
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Bivariate discriminatory power 
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Bivariate discriminatory power 
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Bivariate discriminatory power 
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Linear discriminant analysis 

• Vectors of descriptors 

• Assume the distribution of descriptors, 
conditional on knowing whether the firm 
defaulted/not, is Gaussian with mean  
and covariance § 

• It is natural to classify according to our 
estimate of the conditional probability of 
default given the descriptors --  

xi; i = 1 : : :N

¹D =¹ND

PfDjxg



Linear discriminant analysis 

• Using Bayes’ theorem 

 

 

 

 

• This is monotonic in the log likelihood ratio 

PfDjxg = PfxjDgPfDgPfxg

= Á(x¡ ¹D;§)
0:5

0:5Á(x¡ ¹D;§) + 0:5Á(x¡ ¹ND;§)

=
1

1 +
Á(x¡¹ND;§)
Á(x¡¹D;§)

log
Á(x¡ ¹ND;§)

Á(x¡ ¹D;§)
= 2x0§¡1(¹D ¡ ¹ND) +C



Linear discriminant analysis 

• So classification is performed according to the Z-
Score 

 
• This ranking can also be derived (Fisher (1936)) 

under weaker assumptions. 
• Altman (1968) derives the Z-Score: 

 
 

• This is slightly different from the score given by 
the formula above. 

z = x0§¡1(¹D ¡¹ND)

z = 0:012(WC=TA) + 0:014(RE=TA) + 0:033(EBIT=TA)

+0:006(ME=BL) + 0:999(S=TA)



Discriminatory power of Z-Score 
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Linear discriminant analysis 

• Note that this does not give us probabilities, 
just a ranking. 

• How to choose the threshold? 

• How to assess the model’s rankings? 



Model assessment – error rates 

• Any threshold we set is a tradeoff between 
two errors: 

– Type 1: characterizing an actual default as a non-
default 

– Type 2: characterizing an actual non-default as a 
default 



Model assessment – error rates 
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Model assessment – cumulative 
accuracy profile (CAP) 

• For a given proportion of the total sample p, 
identify the firms with scores below the pth 
quantile. 

• Calculate the proportion of defaulted firms 
q(p) present in this subsample. 

• The CAP is the graph of the pairs {p,q(p)} 



Model assessment – cumulative 
accuracy profile (CAP) 

• Engelmann et al (2002), Figure 1. 
• The Accuracy Ratio (AR) is the ratio of the model performance to 

perfect performance, as measured by the area between the CAP 
curves. 

• Curve is also known as Receiver Operating Characteristic (ROC).   
• Statistics (area under curve) have a known standard error.  See 

Fabozzi et al (2010) and references therein. 

AR = aR
aP



Model assessment – cumulative 
accuracy profile (CAP) 
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Some warnings 

• All of these model assessments are in sample. 

• All of the dependencies are linear. 

• The data is over forty years old, and 
references manufacturing firms only.  The 
results should not be extrapolated to the 
current day. 

• The model only gives us relative scores, not 
default probabilities. 



Extrapolate to the current day 

• Consider MSCI, Inc. using data for year ending December 31, 2011 
 

• From Income Statement (Yahoo Finance) 
– Income before tax (proxy for EBIT) -- $263.4M 
– Total revenue (proxy for Total Sales) -- $900.9M 

• From Balance Sheet (Yahoo Finance) 
– Total current assets -- $677.9M 
– Total assets -- $3092.9M 
– Total current liabilities -- $452.8M 
– Retained earnings -- $363.5M 
– Total liabilities -- $1787.6M 

• From Key Statistics (Yahoo Finance, 4 Dec 2012) 
– Market capitalization -- $3.55B 



Extrapolate to the current day 

• Now compute Z-Score inputs 
– WC/TA = 7.28  

– RE/TA = 11.75 

– EBIT/TA = 8.52 

– ME/TL = 199 

– TS/TA = 0.29 

• Recall that first four items are expressed as 
percent, and the last as decimal. 

• Z-Score = 2.02 (within the range of overlap 
between defaulters and non-defaulters) 



Z-Metrics 

• Data covers 1989-2008 

• Over 260,000 observations (firm x time) 

• 638 credit events (formal default or 
bankruptcy) 

• Overall (unconditional) default rate is more 
representative than 50% (used implicitly in 
1968) 

• One- and five-year horizons 

 



Z-Metrics – advances over 40 years 

• More data – trends as well as levels 

• Variable transformations – non-linear 
responses 

• True point-in-time model – macroeconomic 
variables at time of observation to distinguish 
higher general levels of defaults 

• Direct estimation of default probabilities 
through logistic regressions 

• Stress tests 

 

 



Z-Metrics variables 

• Twelve fundamental variables 

– Financial statements  

– Market data 

– Trends 

• Macroeconomic variables (one-year model) 

– Unemployment rate 

– Spread of high-yield bonds over 10yr Treasuries 

• Transformations 



Variable transformations 
Z-Metrics White Paper, Figure 6 



Model form 

• Let x be a vector containing (transformed) 
fundamental and market-based variables for a 
specific firm at a specific time, as well as 
macroeconomic variables for this time. 

• Use a logistic regression framework to model 
conditional default probabilities directly: 

CS(x) = ® +
X

i

¯ixi + "

PfDjxg =
1

1 + exp[CS(x)]



Fitting the logistic regression 

• Fit the coefficients ® and ¯i by Maximum 
Likelihood Estimation (see mnrfit in Matlab) 

• Log Likelihood for overall estimation:  

logL = log

2
4Y

j2D

1

1 + exp[CS(x(j))]
¢
Y

j2ND

µ
1¡ 1

1 + exp[CS(x(j))]

¶3
5

= log

2
4Y

j2D

1

1 + exp[CS(x(j))]
¢
Y

j2ND

1

1 + exp[¡CS(x(j))]

3
5

= ¡
X

j2D
log[1 + exp[CS(x(j))]]¡

X

j2ND

log[1 + exp[¡CS(x(j))]]



Fitting to 1968 data 
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Mapping default probabilities to 
ratings 



Z-Metrics examples  
(as of 19 Nov 2010) 

One-year Five-year 

Issuer PD Z-rating PD Z-rating 

MSCI INC-CL A 0.10% ZB 4.49% ZB- 

MORNINGSTAR INC 0.04% ZA 1.92% ZB+ 

FACTSET RESEARCH SYSTEMS INC 0.01% ZA+ 0.32% ZA+ 

APPLE INC 0.02% ZA+ 1.23% ZA 

AT&T INC 0.06% ZB+ 1.41% ZA- 

MICROSOFT CORP 0.04% ZA- 1.06% ZA 

INTL BUSINESS MACHINES CORP 0.05% ZA- 1.02% ZA 

JOHNSON & JOHNSON 0.02% ZA+ 0.50% ZA+ 

LILLY (ELI) & CO 0.03% ZA 0.63% ZA+ 

MERCK & CO 0.03% ZA 0.83% ZA 

MONSANTO CO 0.04% ZA 1.13% ZA 

PFIZER INC 0.07% ZB+ 1.62% ZA- 

CROCS INC 0.04% ZA 2.25% ZB+ 

K-SWISS INC  -CL A 0.28% ZC+ 7.53% ZC 

NIKE INC 0.01% ZA+ 0.49% ZA+ 

SKECHERS U S A INC 0.15% ZB- 4.11% ZB- 

GENERAL ELECTRIC CO 0.35% ZC 6.26% ZC 

NUCOR CORP 0.09% ZB 1.43% ZA- 

PG&E CORP 0.16% ZB- 3.38% ZB 



STRUCTURAL MODELS 



Merton (structural) model 

• Consider model of Merton (1974), as described in 
Hull et al (2004). 

• We model the (stylized) balance sheet of a firm: 

– Assets A evolve according to Geometric Brownian Motion 
with constant volatility ¾A 

– The firm issues one class of debt: a discount bond of size D 
maturing at time T 

– Equity receives no dividends 

– At T, assets are used to repay debt holders, with the 
residual going to equity holders 



Valuing equity 

• Equity holders’ payout at T: 

 

 

• Under Black-Scholes-Merton, the current 
value of equity is: 

ET =max[AT ¡D;0]

E0 = A0N(d1)¡De¡rtN(d2);

d1 =
log[A0e

rt=D]

¾A
p

T
+ 0:5¾A

p
T ;

d2 = d1 ¡ ¾A
p

T :



Valuing equity 

• Define leverage ratio 

 

 

• Then rewrite equity formula: 

 

L = De¡rT=A0

E0 = A0[N(d1)¡ LN(d2)] (1)

d1 =
¡ log[L]

¾A
p

T
+ 0:5¾A

p
T ;

d2 = d1 ¡ ¾A
p

T :



• Since equity value is a function of asset value, Ito’s lemma gives 
instantaneous equity volatility: 

 

 

 

 

 

 

 

 

• Observe that equity is no longer a GBM, implying that the Black-Scholes 
framework no longer holds. 

• To calibrate, we observe or estimate E0, ¾
E

, D and T, and use (1) and (2) to 
solve for A0 and ¾A 

dEt = ±(At)dAt +
1

2
°(At)¾

2A2
tdt

¾E = StDev
dEt

Et

E0¾E = ±(A0)A0¾A

¾E =
¾AN(d1)

N(d1)¡ LN(d2)
(2)

Calibrating 



Valuing debt 

• Default event is defined at T by  
– Bond holders get less than D, or  
– Equity holders get nothing, or 
– AT<D 

• The probability of default is 
 
 

• The value of the debt comes from the parity relationship: 
 
 

• To apply to arbitrary debt instruments, we can be a bit 
sloppy and price using the default probability and the 
Hull-White framework from before. 
 

 

PfAT < Dg= N(¡d2)

At = Et +Bt



Issues with Merton 

• Relationships between equity and credit markets 
come and go 

• Measuring D is a matter of art. 

• Assuming a single debt maturity is controversial.   

• What about the possibility of defaults before T? 

• How to estimate equity volatility? 

• Is the model for asset values well specified? 



Extensions 

• Pricing equity options consistently in the model framework enables use of 
implied volatility 
– Geske (1977) – compound option framework 
– Hull et al (2004), Stamicar and Finger (2005) – calibrate to one or more option 

quotes 

• Further extension enables the treatment of the default barrier (D) as 
endogenous (implied) 
– Leland and Toft (1996) 
– Hull et al (2004) 
– Stamicar and Finger (2005) 

• Calibrate to empirical default distribution 
– Crosbie and Bohn (2003) 

• Distinction of long- and short-term debt 
– Geske (1977) 

• Default timing, first passage; random or non-constant barriers; random 
interest rates 
– See references in Fabozzi et al (2010) 

 



Example -- MSCI 

• Balance sheet as of 31 Aug 2010 (Yahoo Finance) 

– Total liabilities – $1914.26M 

– Total current liabilities – $409.32M 

– Shares outstanding – 118.56M 

• Do current liabilities contribute to long-term leverage?  
Common practice is to count only 50%. 

• So total effective liabilities comes to  
0.5*$409.32+(1914.26-409.32) = $1709.60M 

• In the model, it is convenient to express everything on a 
per share basis, so D = $14.42 



Example -- MSCI 

• Stock price (30 Nov 2010) = 34.78. Assume discount rate 2% 
• Annualized volatility based on one year of daily stock 

returns:  32% 
• Options (Yahoo Finance, 30 Nov 2010), expiry 19 Mar 2011 

– Put struck at 35:  Price=2.6, BS Volatility=34.1% 
– Put struck at 30:  Price=1.05, BS Volatility=40.8% 

• Options (Yahoo Finance, 30 Nov 2010), expiry 17 Jun 2011 
– Put struck at 30:  Price=1.45, BS Volatility=36.0% 
– Put struck at 25:  Price=0.7, BS Volatility=43.6% 

• Recall that ¾E in the model is not the Black-Scholes 
volatility.  We are making an approximation in using these 
figures without adjustment. 
 
 



Example -- MSCI 

• Assume debt matures at five years. 

• So start with 

 E0= 34.78,  ¾E= 32%, T= 5, D= 14.42 

• Initial guess:  A0= 40, ¾A= 25% (what are 
constraints on these?) 

• Solving (1) and (2) iteratively gives 
 A0= 47.80, ¾A= 23.4% 

• Implied probability of default is P=1.31% 



Interpreting results 

• To compare with Z-Metrics, annualize the default 
probability, that is, find p such that 

 

• Annualized default probability is p= 0.26%.  One-
year PD from Z-Metrics is 0.10%. 

• Asset value converted from per share is $5667M.  
Balance sheet total assets is $1200M. 

• Traditional leverage ratio is A0/E0= 1.37 
 

1¡P = (1¡ p)T



Volatility sensitivity 

¾E A0 ¾A P p Leverage 

32.0% 47.80 23.4% 1.31% 0.26% 1.374 

34.1% 47.78 24.9% 2.03% 0.41% 1.374 

36.0% 47.76 26.4% 2.86% 0.58% 1.373 

40.8% 47.66 30.1% 5.64% 1.15% 1.370 

43.6% 47.57 32.4% 7.71% 1.59% 1.368 

• Across the range of plausible volatility values, 
leverage and asset value are stable, but 
default probability changes by a factor of six. 



PORTFOLIO MODELS 



Agenda 

• The CreditMetrics model – single horizon 
portfolio credit risk 

• The Vasicek distribution 

• Extending to continuous time (sort of) – the 
copula framework and CDO pricing 

• Sources of correlation data 



Two major applications 

• Assess the economic capital required to 
support a portfolio of defaultable but possibly 
not tradeable positions over long time 
horizons, specifically one year. 

• Price derivative and structured products (e.g 
CDOs) referencing a portfolio of defaultable 
securities. 



Value if no 
rating changes 

What is economic capital? 

18 18.5 19 19.5 20 

Worst case  
value at 1% 

Risk capital at 1% 

Expected loss 

Expected value  

Portfolio value 

• Expected loss is typically covered through pricing or 
reserves, and is additive. 

• Capital is covered by the firm’s equity (or other loss 
buffers), and is in general not simply additive. 

 



How to build a portfolio model? 

• We need correlations, but of what? 

• Consider random variables X1 and X2 defined as 
default indicators: 

 

• Let pi be the default probability for obligor i, and p12 
be the joint default probability. 

• The default correlation ½D is defined as the 
correlation coefficient between X1 and X2: 

 

 

Xi =

½
1; if obligor i defaults;

0; otherwise

½D =
p12 ¡ p1p2p

p1(1¡ p1)
p

p2(1¡ p2)



Are default correlations enough? 

• For a general portfolio with n obligors, is the 
model fully specified with pi for each obligor 
and ½D for all pairs? 

• Consider n=3.  There are eight distinct events 
(each obligor can default or not), plus one 
constraint (probabilities have to sum to one). 

• But the pi and ½D only give us six parameters. 

• The model needs more structure. 



A simple model 

• Assume pi are given for all obligors for a particular time horizon. 
• Inspired by the Merton framework, assume each obligor’s default is 

driven by its asset value Zi. 

• So obligor i defaults if Zi<®i, where ®i is the default threshold. 
 

• Now assume each Zi follows a standard normal distribution. Then 
default thresholds are given by 
 

• Assume the Zi jointly follow a multivariate normal distribution.  
Then since the default distribution depends only on the Zi, the 
model is fully specified. 
 

• We refer to the correlations between the Zi as asset correlations. 
• Since the pi are given exogeneously, the model is insensitive to the 

mean and variance of Zi. 
 

®i = ©¡1(pi):



Is this model sufficient for capital? 

• Future portfolio value is given by 
 
 
where Ei is the exposure to obligor i and Xi is the 
default indicator. 

• The model distinguishes between good and bad 
credits, and large and small positions. 

• The model is sensitive to industry and sector 
concentrations through the correlation 
parameters. 

• But the model is insensitive to maturity. 
 

VP =
X

i

EiXi



Capturing maturity risks 

• We would like to capture the effect that a longer maturity 
instrument has more time to get into trouble. 

• One approach is to let the p_i in the model refer to the 
default probability over the life of the bond or load in 
question, but … 
– The portfolio loss is an odd definition, with no specific timing, 

and 
– Correlation is odd, in that events that occur over different 

periods are still correlated. 

• The alternate approach is to maintain a fixed horizon, but 
reflect credit quality changes other than default, namely 
ratings migrations. 

• Migration probabilities typically derive from transition 
matrices, as discussed previously. 



Capturing maturity risks 

• Assume bonds and loans are valued 
according to spreads that depend on 
their rating and (possibly) maturity. 

• A rating change will trigger a 
revaluation according to a different 
spread, for instance using the OAS 
formula from earlier. 

• Longer maturity instruments will be 
more sensitive to these changes in 
spread.  

Maturity 

2 3 5 7 10 

AAA 15 20 25 27 30 

AA 20 25 30 32 37 

A 30 40 45 50 58 

BBB 62 68 75 80 85 

BB 200 225 250 300 300 

B 300 350 375 400 400 

CCC 1100 950 775 725 700 



The new univariate distribution 

Baa Current state 

Aaa Aa A Baa Ba B Caa Default Possible states 
at horizon 

100.9% 100.8% 100.7% Par 97.5% 95.8% 83.2% Rec. Instrument value 

0.00% 0.11% 5.28% 86.71% 6.12% 1.27% 0.23% 0.28% Probabilities  

(determined exogenous to model) 



Generalize the two-state model 

Asset return over one year 

Set first threshold  
so tail contains  

default probability. 

Second threshold  
so next region  

contains  
CCC probability. 

®Def 

®CCC 

®B ®BB ®A 



One correlation gives all joint 
probabilities 

Obligor 1 

Obligor 2 

Similar asset returns  
produce joint defaults 

Opposite asset returns 
produce different credit moves. 



Most typically, the model is 
implemented through Monte Carlo 

1. Compute default and transition thresholds – ®Def, 
®CCC, etc. – for each obligor, according to each 
obligor’s rating. 

2. Generate random variables Zi corresponding to each 
obligor, according to the asset correlation matrix. 

3. Compare each Zi to the obligor thresholds, and assign 
a rating. 

4. Compute the value of the positions for each obligor 
according to the new rating. 

5. Aggregate to get a portfolio value. 
6. Repeat N times, and compute risk statistics. 



A special case 

• Return to the two-state model. 
• Assume that the correlation structure is 

generated by a single-factor model: 
 
 
where  
–  ½ is a single pairwise correlation parameter, 
– Z is a common market factor, distributed N(0,1), and 
–     are idiosyncratic to the individual obligors, 

distributed N(0,1), mutually independent and 
independent of Z 

 

Zi =
p

½Z +
p
1¡ ½"i

"i



Conditional default probability 

• Recall the default threshold for each obligor is 
 
where pi is the unconditional default 
probability. 

• Define the conditional default probability 

 

• The default condition is 

®i = ©¡1(pi)

pi(z) ´PfObligor i defaultsjZ = zg

Zi < ®i () "i <
®i ¡

p
½Zp

1¡ ½



Two important observations 

• The conditional default probability is 

 

 

 

 

• Conditional on Z, all obligor defaults are 
independent. 

pi(z) = P fZi < ®ijZ = zg

= P
½

"i <
®i ¡

p
½zp

1¡ ½

¾

= ©

µ
®i ¡

p
½zp

1¡ ½

¶



The fine-grained limit 

• Assume 
– All default probalities are equal … pi´ p 
– There are N obligors in the portfolio. 
– The exposure to each obligor is 1/N. 
– Recovery is zero for each obligor. 
– The correlation structure is as defined previously. 

• Portfolio loss is  
 

• We are interested in the portfolio distribution in 
the limit as N!1. 

L =
1

N

NX

i=1

Xi



Condition on the market factor … Z=z 

• Each obligor has conditional default 
probability p(z). 

• Obligor defaults are conditionally 
independent. 

• The number of obligor defaults conditionally 
follows a binomial distribution with 
parameters p(z) and N. 

 



Condition on the market factor … Z=z 

• Conditional mean of portfolio loss 
 
 

• Conditional variance of portfolio loss 

 

 

E[LjZ = z] =
1

N

NX

i=1

E[XijZ = z] = p(z)

Var[LjZ = z] =
1

N2
Var

"
NX

i=1

XijZ = z

#

=
1

N2

NX

i=1

Var [XijZ = z] (using conditional independence)

=
1

N2

NX

i=1

p(z)(1¡ p(z))

=
p(z)(1¡ p(z))

N



In the limit N!1 

• Conditional on Z=z 
– Portfolio mean approaches p(z) 

– Portfolio variance approaches zero 

• Moreover, 

 

• So  

 

• Portfolio loss converges to 

lim
z!1

p(z) = 1; lim
z!¡1

p(z) = 0

lim
z!§1

Var[XijZ = z] = lim
z!§1

p(z)(1¡ p(z)) = 0

L ! p(Z) = ©

µ
®¡p½Zp

1¡ ½

¶



The limiting distribution 

• In the limit, the portfolio loss is distributed as p(Z), where Z is 
distributed N(0,1). 

• This distribution is referred to as the fine-grained limit or the 
large pool model or the Vasicek distribution. 

• The portfolio CDF is easy to compute: 

PfL < lg = P
½
©

µ
®¡p½Zp

1¡ ½

¶
< l

¾

= P
½

®¡p½Zp
1¡ ½

< ©¡1(l)

¾

= P
½

Z >
®¡

p
1¡ ½©¡1(l)
p

½

¾

= ©

µp
1¡ ½©¡1(l)¡ ®

p
½

¶



PRICING STRUCTURED CREDIT 



Expanding to multiple horizons 

• The applications discussed so far concern the 
portfolio distribution at a single horizon. 

• Other applications need to address multiple 
horizons, and to deal with default timing 
explicitly. 

• One important example is the pricing of 
collateralized debt obligations (CDOs). 



Example: synthetic CDO in swap form 

• Define a reference portfolio containing, for example, unit 
positions on 100 obligors. 

• Protection seller compensates for losses on the index in 
excess of one level (the attachment point) and up to a 
second level (the detachment point). 

• For example, on the 3-7% tranche of the CDX, protection 
seller pays losses over 3% (attachment) and up to 7% 
(detachment). 

• Protection buyer pays an upfront amount (for most junior 
tranches) plus a periodic premium (for example, 100bp) on 
the remaining amount being protected. 

• Pricing depends on the distribution of losses on the index, 
not just the expectation. 
 



Example: synthetic CDO in swap form 

• Assume the swap is for five years, with annual 
payments. 

• Assume total portfolio notional is 2500.  Notional 
amount protected is (7%-3%)*2500= 100. 

• First year 
– Two defaults with recovery 40% each … loss of 1.2% of 

original portfolio 
– Protection seller pays nothing (losses have not 

reached attachment point) 
– Protection buyer pays 100bp*100=1 (payment based 

on amount protected for the period) 



Example: synthetic CDO in swap form 

• Second year 

– Five defaults with recovery 40% each … loss of 3% 
of original portfolio … cumulative losses now 
4.2%. 

– Protection seller pays (4.2%-3%)*2500=30. 

– Protection buyer pays 100bp*100=1. 

– Notional protected for next period is (7%-
4.2%)*2500=70.  



Example: synthetic CDO in swap form 

• Third year 
– Zero defaults … cumulative losses still 4.2%. 

– Protection seller pays zero. 

– Protection buyer pays 100bp*70=0.7. 

– Notional protected for next period is still 70.  

• Fourth year 
– One default … cumulative losses now 4.8%. 

– Protection seller pays 0.6%*2500=15. 

– Protection buyer pays 100bp*70=0.7. 

– Notional protected for next period is 55.  

 



Example: synthetic CDO in swap form 

• Fifth year 

– Ten defaults … cumulative losses now 10.8% 

– Protection seller pays (7%-4.8%)*2500=55. 

– Protection buyer pays 100bp*55=0.55. 

– Notional protected for next period would be zero.  



Pricing – general framework 

• Risk-free discounting from t – D(t) 

• Spread rate – s 

• Attachment (a) and detachment (d) points 

• Assume original total portfolio is 1. 

• Cumulative portfolio loss to time t – Lt 

• Cumulative tranche loss to t –   

 

• Remaining notional protected –  

TLt =minfd¡ a;maxfLt ¡ a;0gg

Nt = (d¡ a)¡TLt



Pricing – general framework 

• Expectation of discounted protection buyer payments 
 
 

• Expectation of discounted protection seller payments 
 
 

• Mark-to-market of a specific tranche is the difference 
of these. 

• Fair spread is the value of s that makes the Mark-to-
Market equal zero. 

• See Mina and Stern (2003). 
 

s

TX

t=1

D(t)ENt¡1

TX

t=1

D(t)E[TLt ¡ TLt¡1]



Pricing – model needs 

• The expectations inside the pricing boil down 
to terms that look like 

 

• This depends on the distribution of Lt at each 
t, but not on the joint distribution of Lt and Ls. 

• It suffices to specify the joint distribution of 
the obligor default times Ti. 

• Other models exist, but we will focus on the 
classic one. 

Eminfd¡ a;maxfLt ¡ a;0gg



Gaussian copula model (Li, 2001) 

• We know the univariate distributions for the Ti from 
our CDS pricing. Let 

• Assume the Ti are driven by standard normal random 
variables Zi, such that 

 

 

• Correlations among Zi induce dependence across Ti. 

• Li (2001) shows that restricted to a single period, this is 
identical to the CreditMetrics model, meaning that we 
may use similar sources of correlation information. 

Pi(t) = PfTi < tg

Ui = ©(Zi)

Ti = P¡1i (Ui)



Applications 

• We may use the model to simulate Ti under 
arbitrary correlation structures, in order to 
evaluate any product depending on portfolio 
default losses. 

• Under the one-factor correlation structure, we 
may use the conditioning argument to reduce 
many problems to a one-dimensional numerical 
integral. 

• For large, homogeneous portfolios, we may use 
the large pool model as our distribution for Lt. 



General framework for the one-factor case 

• We wish to compute something like 
 
where   

Eminfd¡ a;maxfLt ¡ a;0gg

Lt =
X

i

ITi<t (portfolio loss is the sum of default indicators)

Ti = P¡1i (©(Zi)) (default driven by normal random variables)

Ti < t () Zi < ©¡1(Pi(t)) (reduction to single period case)

Zi =
p

½Z +
p
1¡ ½"i (one-factor correlation structure)



General framework for the one-factor case 

1. Conditioning step.  Condition on the market factor Z.  
Compute conditional default probabilities. 

2. Convolution step.  Use conditional independence to 
compute (or approximate) conditional distribution of 
Lt.  This could mean using the binomial distribution 
explicitly (for small portfolios) or applying Fourier 
transforms or approximating with the large pool 
model.  Calculate the conditional expectation of the 
min-max form desired. 

3. Integration step.  Numerically integrate over the 
different values for Z, using the Gaussian density for Z. 



CORRELATION DATA 



Asset and equity correlation 

• Under the Merton model, equity is a function of 
the asset value. We used Ito’s lemma before to 
derive the adjustment in instantaneous volatility. 

• The same argument implies that for two firms, 
the instantaneous asset correlation is the same as 
the instantaneous equity correlation. 

• This means we can use observable equity 
correlations to parameterize the portfolio model. 

 



Empirical equity correlations  
(700 firms) 

• Five years of weekly data: 

– 25% within industries 

– 16% across 

 

• One year of daily data: 

– 31% within industries 

– 22% across 

 



Correlations across the Dow 30 

• Realized correlation 
over rolling 50-day 
periods, averaged 
across all pairs 

• Implied correlation 
from options on index 
and options on 
individual stocks 



Empirical default data 

• Characterize correlation through default rate volatility, using the 
mapping defined earlier. 

• De Servigny and Renault (2003) 
– Default correlation: 5.3% within industry, 1.3% across 
– Asset correlation: 18% within industry, 6% across 
– But sampling error could be as high as 50% 

• Demey et al (2004) 
– Maximum likelihood, estimating correlations directly but on empirical 

default data 
– Correlations within industry 10-15% at low end (consumer, auto, tech), 

25-40% at high end (insurance, real estate) 
– Correlations across industry 7-10% 

• This approach is also useful for retail and SME portfolios, where 
empirical default data is more likely available than equity data. 



• Correlations for corporates depend on the PD, set by policy 

 

 

• Maturity adjustment calibrated to empirical examples using 
credit migrations 

 

 

• IRB formula uses the Vasicek distribution. 

Basel II 

½ = 0:12
1¡ exp(¡50p)
1¡ exp(¡50) + 0:24

exp(¡50p)
1¡ exp(¡50)

b = (0:11852¡ :05478 ¢ log(p))2

(1¡R) ¢©
µ

1p
1¡ ½

©¡1(p) +

r
½

1¡ ½
©¡1(0:999)

¶
¢ 1¡ 1:5b

1 + (M ¡ 2:5)b



Rating agencies – Standard & Poor’s 

• CDO Evaluator used to establish critical default 
level for desired rating. 

 

• Monte Carlo is performed according to the 
asset value model. 

 

• Correlation assumptions (corporates): 
– 30% within industry 

– 0% across industry 



• Old Diversity Score model -- characterize a correlated 
portfolio by a smaller independent portfolio. 

• Variance of n correlated assets: 

 

 

• Variance of N independent assets: 

 

 

• Moody’s tables are consistent with a default 
correlation of 16% within industry, 0% across. 

Rating agencies – Moody’s 

p(1¡ p)

n
(1 + (n¡ 1)½D)

p(1¡ p)

N



Rating agencies – Moody’s 

• Mapping from default to asset correlation depends on 
default rate. 

 

 

 

 

 

 

 

• Broadly, an average asset correlation of 30-50% is used. 

 

1 2 3 4 5 6 7 8 9 10

A1 95 79 72 70 68 66 65 64 63 61

A2 88 75 69 66 64 63 62 60 59 57

A3 78 71 66 63 61 60 58 57 56 54

Baa1 74 68 63 60 58 56 55 53 52 51

Baa2 70 64 60 57 55 53 51 50 49 47

Baa3 65 58 54 52 49 47 46 44 44 42

Ba1 60 53 49 46 44 42 41 40 39 38

Ba2 55 48 44 42 39 38 37 36 35 35

Ba3 50 43 40 38 36 35 34 33 33 33

B1 45 39 36 34 33 32 32 31 30 30

B2 41 36 33 32 31 30 29 29 29 29

B3 36 32 31 30 29 28 28 28 27 27

Caa1 32 30 29 28 28 27 26 26 26 26



SCDO implied correlation 

• Tranches on CDX North America 

 



Comparison of Correlation Data Sources 

• Equity returns, US firms, 1998-2002 
– Average intra-industry correlation = 25% 
– Overall average correlation = 17% 

• Implied equity correlations 
– Across DJX constituents … 20-40% 

• Default history 
– S&P (1981-2001) … Intra-industry 18%, overall 7%  
– S&P (1981-2002) … MLE approach … Intra-industry 10-40%, overall 8-10% 

• BIS IRB formula 
– Overall 10-20% 

• CDO rating models 
– Intra-industry 30-40%, independent across 

• Synthetic CDO pricing 
– CDX NA equity correlation stable around 20% until 2008, now about 30% 
– Higher values for more senior tranches 
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