Fixed Income and Credit Risk : exercise sheet $\mathrm{n}^{\circ} 06$

Fall Semester 2012

Professor Assistant Program
Fulvio Pegoraro Roberto Marfè MSc. Finance

Exercise ${ }^{\circ} 01$ [Floating Rate Bond (from Veronesi (2010))].

At the date $t=0.25$ we observe a floating rate bond maturing at $T=6$ that pays a semiannual coupon (no spread). Last quarter the semiannually compounded rate was 3% (annual basis). At the same date we also observe in the market a coupon bond with price $C B(0.25,0.5)=100.0448$ and paying quarterly a coupon at the coupon rate of 3% (annual basis). What is the price of this floating rate bond?

Exercise $\mathrm{N}^{\circ} 02$ [Floating Rate Bond (from Veronesi (2010))].

What is the price at $t=0$ of a 0.5 -year floating rate bond that pays a quarterly coupon equal to the floating plus a 1% spread (annual basis)? We know the following:
a. We observe at $t=0$ the price of a zero-coupon bond $B(0,0.25)=99.80$ (face value 100);
b. We observe a coupon bond paying an annualized rate of 2% quarterly with a price of $C B(0,0.5)=100.3960$;

Exercise $\mathrm{N}^{\circ} 03$ [Forward Rate Agreements with opposite payoffs (from Veronesi (2010),
chapter 5)]. chapter 5)].

In the Example 3 of Lecture 6 we have seen the case of a firm asking to its bank to close at date $s=t+3$ months the $F R A$ initiated at date t (notional amount $N=1$). We have seen that the value was $V^{F R A}(s)=\$ 0.319638$. Show that the firm can achieve the same result by entering into a new $F R A$ at time s with the reversed payoff.

Exercise $\mathrm{N}^{\circ} 04$ [Equivalence between Forward contract return and forward rate (from Veronesi (2010), chapter 5)].

Let us consider at date t a firm that enters into a forward contract with a bank to purchase six months later ($\tau=t+0.5$ years) $\$ 100$ million-worth of 6 -months Treasury bills for a price $\Phi(t, \tau, T)$ specified today (for $\$ 100$ par value).
i) What purchase price would the bank quote to the firm, for the 6 -months T-bill, given that $B(t, t+0.5$ years $)=0.97728$ and $B(t, t+1$ year $)=0.95713$?
ii) Assuming that the firm enter into a forward contract to purchase $M=1.02105$ million of 6 -month T-bill on τ (with $\$ 100$ of par value, and $B(t+0.5$ years, $t+1$ year) $=\$ 98.89$), show that the forward contract yields a return on investment equal to the date- t forward rate over the period (τ, T) of the Example 1 in Lecture 6.

Exercise ${ }^{\circ} 05$ [Forward on a Coupon Bond].

Let us suppose that an investor is interested to buy at date t a forward contract for delivery at date $T>t$ of a coupon bond with maturity date \widetilde{T}. Assuming that the date- t price of the ZCB with maturity date T is $B(t, T)=97$ and that today the coupon bond has a price $C B(t, \widetilde{T})=115$, determine the forward price.

Exercise $\mathrm{N}^{\circ} 06$ [Value of a Swap (from Veronesi (2010))].

Determine the value of a 1.5-year swap, with swap rate $c=5.52 \%$ and notional $N=100$ million. Use the following discount factors:

$$
\begin{aligned}
& {[B(0,0.25), B(0,0.5), B(0,0.75), B(0,1), B(0,1.25), B(0,1.5), B(0,1.75), B(0,2)] } \\
= & (0.9848,0.9745,0.9618,0.9490,0.9353,0.9215,0.9084,0.8953) .
\end{aligned}
$$

You are told that this is a swap at initiation. Is the value accurate (remember that the swap's fixed lag is paid semiannually, not quarterly)?

Exercise $\mathrm{N}^{\circ} 07$ [Exercise $\mathrm{N}^{\circ} \mathbf{0 6}$, continued (from Veronesi (2010))].

Let us consider the same swap as in the previous exercise. what is the value of the swap three months after the initiation, where the discount factors are now:

$$
\begin{aligned}
& {[B(0.25,0.5), B(0.25,0.75), B(0.25,1), B(0.25,1.25), B(0.25,1.5), B(0.25,1.75), B(0.25,2), B(0.25,2.25)] } \\
= & (0.9840,0.9680,0.9520,0.9360,0.9190,0.9040,0.8880,0.8730),
\end{aligned}
$$

and given that the 6 -month LIBOR rate at date $t=0$ was $r_{2}(0)=5.170 \%$ (annual basis).

Exercise $\mathrm{N}^{\circ} 08$ [Defaultable ZCB price in a simple setting with payment at maturity].

Let us consider the problem to price at date $t=0$ a defaultable ZCB with maturity date T and constant recovery rate $R R$. If the default date τ has not appeared before T, the payoff is equal to one, otherwise if $\tau \leq T$, then the bondholder receives $R R$ at T. Let us assume to have a deterministic risk-free rate r_{t} over the time horizon $[0, T]$, and let us assume that the non-negative random variable τ has an historical cumulative probability function $F(t):=\mathbb{P}(\tau<t)$, with $F(t)<1$ for any $t<T$. Under the risk-neutral probability measure we have $F^{*}(t):=\mathbb{Q}(\tau<t)$.

Show that :
a) the price at date $t=0$ (the initial date) of the defaultable $\mathrm{ZCB} D B(0, T)$ is given by:

$$
\begin{aligned}
D B(0, T) & =E_{0}^{\mathbb{Q}}\left[\exp \left(-\sum_{i=0}^{T-1} r_{i}\right)\left(\mathbb{I}_{\{\tau>T\}}+R R \times \mathbb{I}_{\{\tau \leq T\}}\right)\right] \\
& =B(0, T)-(1-R R) \exp \left(-\sum_{i=0}^{T-1} r_{i}\right) F^{*}(T)
\end{aligned}
$$

b) the price at date $t \in(0, T)$, conditionally to $\tau>t$ (the predefault price), is given by:

$$
\begin{aligned}
D B(t, T) & =E_{t}^{\mathbb{Q}}\left[\exp \left(-\sum_{i=t}^{T-1} r_{i}\right)\left(\mathbb{I}_{\{\tau>T\}}+R R \times \mathbb{I}_{\{\tau \leq T\}}\right) \mid \tau>t\right] \\
& =B(t, T)-(1-R R) \exp \left(-\sum_{i=t}^{T-1} r_{i}\right) \frac{F^{*}(T)-F^{*}(t)}{1-F^{*}(t)}
\end{aligned}
$$

In addition : c) provide an interpretation of $\left.\frac{F^{*}(T)-F^{*}(t)}{1-F^{*}(t)} ; d\right)$ provide the defaultable ZCB pricing formula at date $t \in(0, T)$, regardless the fact the $\tau>t$ or not. Let us denote this price $\widetilde{D B}(t, T)$.

Exercise $\mathbf{N}^{\circ} 09$ [Exercise $\mathrm{N}^{\circ} 08$, continued].

Let us consider again the pricing problem presented in Exercise $\mathrm{N}^{\circ} 06$, but let us assume now to be in a continuous time setting with a recovery rate function of the default date, $R R(\tau)$ say. Let us denote the historical and risk-neutral probability density function (p.d.f.) of the random default date τ by $f(t)$ and $f^{*}(t)$, respectively. Write the pricing formulas: i) $\left.D B(0, T) ; i i\right) D B(t, T)$, and iii) $\widetilde{D B}(t, T)$.

Exercise $\mathrm{N}^{\circ} 10$ [Defaultable ZCB price in a simple setting, intensity function and credit spread].

Let us consider the defaultable ZCB pricing problem, in continuous time, presented in Exercise N° 07. Let us assume to have a deterministic risk-free rate r_{t} over the time horizon $[0, T]$, and let us assume that the non-negative random variable τ has an historical cumulative probability function $F(t):=\mathbb{P}(\tau<t)$, with $F(t)<1$ for any $t<T$. Under the risk-neutral probability measure we have $F^{*}(t):=\mathbb{Q}(\tau<t)$. The historical and risk-neutral probability density function (p.d.f.) of the random default date τ is denoted $f(t)$ and $f^{*}(t)$, respectively.

Let us introduce the hazard function Λ defined by:

$$
\Lambda(t)=-\log (1-F(t))
$$

and its derivative $\lambda(t)=\frac{f(t)}{1-F(t)}$ is called hazard rate (or, intensity rate).

Represents the default probability $\mathbb{P}(\tau>t)$ and the predefault price $D B(t, T)$ in terms of $\lambda(t)$. Provide also an interpretation of $\lambda(t)$ in terms of default probability. Moreover, write the credit spread assuming that the recovery and intensity rates are constant.

Exercise $\mathrm{N}^{\circ} 11$ [Defaultable ZCB price in a simple setting with payment at hit].

Let us consider the defaultable ZCB pricing problem, in continuous time, presented in Exercise ${ }^{\circ}{ }^{\circ}$ 03. Nevertheless, in case of default at time $\tau \leq T$, the recovery rate $R R(\tau)$ is paid at τ and not at T. Write the pricing formulas: i) $D B(0, T)$;ii) $D B(t, T)$, and iii) $\widetilde{D B}(t, T)$.

Exercise $\mathrm{N}^{\circ} 12$ [Defaultable ZCB pricing formula in discrete-time with zero recovery].
Let us consider a no-arbitrage discrete-time setting and the problem to price at date t a defaultable ZCB, with maturity date at $t+h$, and issued by the firm i. Prove that:

$$
\begin{aligned}
D B_{i}(t, t+h) & =E\left[M_{t, t+1} \ldots M_{t+h-1, h} \mathbb{I}_{\tau_{i}}>t+h\right. \\
& =E\left[I_{t}\right] \\
& \left.=E M_{t, t+1} \ldots M_{t+h-1, h} \exp \left(-\lambda_{t+1}^{i}-\ldots-\lambda_{t+h}^{i}\right) \mid I_{t}\right]
\end{aligned}
$$

where $I_{t}=\left(\underline{x}_{t}, \underline{x}_{t}^{i}, \tau_{i}>t\right)$ and where λ_{t+1}^{i} denotes the one-period conditional survivor intensity over $(t, t+1)$:

$$
\begin{aligned}
\mathcal{S}_{\tau, t, t+1}^{i} & =\mathbb{P}\left[\tau_{i}>t+1 \mid \tau_{i}>t, \underline{x}, \underline{x^{j}}, j=1, \ldots, n\right] \\
& =\mathbb{P}\left[\tau_{i}>t+1 \mid \tau_{i}>t, x_{t+1}, x_{t+1}^{i}\right] \\
& =\exp \left(-\lambda_{t+1}^{i}\right), \text { say, } \forall t .
\end{aligned}
$$

