Jacobian transformation

The Jacobian transformation is an algebraic method for determining the probability distribution of a variable y that is a function of just one other variable x (i.e. y is a transformation of x) when we know the probability distribution for x.

- Let x be a variable with probability density function $f_{x}(x)$ and cumulative distribution function $F_{x}(x)$;
- Let y be another variable with probability density function $f_{y}(y)$ and cumulative distribution function $F_{y}(y)$;
- Let y be related to x by some function such that x and y increase monotonically, then we can equate changes $d F_{y}(y)$ and $d F_{x}(x)$ together, i.e.:

$$
\left|f_{y}(y) d y\right|=\left|f_{x}(x) d x\right|
$$

Rearranging a little, we get:

$$
f_{y}(y)=\left|\frac{d x}{d y}\right| f_{x}(x)
$$

where $\left|\frac{d x}{d y}\right|$ is known as the Jacobian.
Example. If $x \sim \operatorname{Uniform}(0, T)$ and $y=1 / x$:

$$
\begin{aligned}
f_{x}(x) & =1 / T \\
x & =1 / y \\
\frac{d x}{d y} & =-1 / y^{2}
\end{aligned}
$$

so the Jacobian is

$$
\left|\frac{d x}{d y}\right|=1 / y^{2}
$$

which gives the distribution for y :

$$
f_{y}(y)=\frac{1}{y^{2} T}
$$

Law of total variance

We know the law of Y and the law of X conditional on Y. We want to compute the variance of X.

$$
\begin{aligned}
\operatorname{Var}[X] & =E\left[X^{2}\right]-E[X]^{2} \\
& =E[\underbrace{\left.E\left[X^{2} \mid Y\right]\right]}_{a}-E[E[X \mid Y]]^{2}
\end{aligned}
$$

Use the definition of variance to get

$$
a=E\left[X^{2} \mid Y\right]=\operatorname{Var}[X \mid Y]+E[X \mid Y]^{2}
$$

and obtain

$$
\begin{aligned}
\operatorname{Var}[X] & =E[a]-E[E[X \mid Y]]^{2} \\
& =E\left[\operatorname{Var}[X \mid Y]+E[X \mid Y]^{2}\right]-E[E[X \mid Y]]^{2} \\
& =E[\operatorname{Var}[X \mid Y]]+\left(E\left[E[X \mid Y]^{2}\right]-E[E[X \mid Y]]^{2}\right) \\
& =E[\operatorname{Var}[X \mid Y]]+\operatorname{Var}[E[X \mid Y]]
\end{aligned}
$$

Laplace transform of a gamma random variable

Let x be $\gamma(a, b)$. Its density function is

$$
f_{x}(x)=e^{-x / b} x^{a-1} b^{-a} \Gamma(a)^{-1}
$$

where $\Gamma(a)=\int_{0}^{\infty} e^{-x} x^{a-1} d x$. The Laplace transform is derived as follows

$$
\begin{aligned}
\varphi_{x}(u) & =E\left[e^{u x}\right] \\
& =\int_{0}^{\infty} e^{u x} f_{x}(x) d x \\
& =\int_{0}^{\infty} e^{u x} e^{-x / b} x^{a-1} b^{-a} \Gamma(a)^{-1} d x \\
& =b^{-a} \Gamma(a)^{-1} \int_{0}^{\infty} e^{u x-x / b} x^{a-1} d x \\
& =b^{-a} \Gamma(a)^{-1}(1 / b-u)^{-a} \int_{0}^{\infty} e^{-x} x^{a-1} d x \\
& =b^{-a} \Gamma(a)^{-1}(1-u b)^{-a} b^{a} \Gamma(a) \\
& =(1-u b)^{-a}
\end{aligned}
$$

Laplace transform of a Poisson random variable

Let x be $\mathcal{P}(a)$. Its probability function is

$$
p_{x}(k)=e^{-a} a^{k}(k!)^{-1}
$$

The Laplace transform is derived as follows

$$
\begin{aligned}
\varphi_{x}(u) & =E\left[e^{u x}\right] \\
& =\sum_{k=0}^{\infty} e^{u k} p_{x}(k) \\
& =e^{-a} \sum_{k=0}^{\infty} e^{u k} a^{k}(k!)^{-1} \\
& =e^{-a} \sum_{k=0}^{\infty}\left(e^{u} a\right)^{k}(k!)^{-1} \\
& =e^{-a} e^{a e^{u}} \\
& =e^{a\left(e^{u}-1\right)}
\end{aligned}
$$

