Jacobian transformation

The Jacobian transformation is an algebraic method for determining the probability distribution of a variable y that is a function of just one other variable x (i.e. y is a transformation of x) when we know the probability distribution for x.

- Let x be a variable with probability density function $f_x(x)$ and cumulative distribution function $F_x(x)$;
- Let y be another variable with probability density function $f_y(y)$ and cumulative distribution function $F_y(y)$;
- Let y be related to x by some function such that x and y increase monotonically, then we can equate changes $dF_y(y)$ and $dF_x(x)$ together, i.e.:

$$|f_y(y)dy| = |f_x(x)dx|$$

Rearranging a little, we get:

$$f_y(y) = \left|\frac{dx}{dy}\right| f_x(x)$$

where $\left|\frac{dx}{dy}\right|$ is known as the Jacobian.

Example. If $x \sim \text{Uniform}(0, T)$ and y = 1/x:

$$f_x(x) = 1/T,$$

$$x = 1/y,$$

$$\frac{dx}{dy} = -1/y^2,$$

so the Jacobian is

$$\left|\frac{dx}{dy}\right| = 1/y^2$$

which gives the distribution for y:

$$f_y(y) = \frac{1}{y^2 T}.$$

Law of total variance

We know the law of Y and the law of X conditional on Y. We want to compute the variance of X.

$$Var[X] = E[X^{2}] - E[X]^{2}$$

= $E[\underbrace{E[X^{2} | Y]}_{a}] - E[E[X | Y]]^{2}$

Use the definition of variance to get

$$a = E[X^2 | Y] = Var[X | Y] + E[X | Y]^2$$

and obtain

$$Var[X] = E[a] - E[E[X | Y]]^{2}$$

= $E[Var[X | Y] + E[X | Y]^{2}] - E[E[X | Y]]^{2}$
= $E[Var[X | Y]] + (E[E[X | Y]^{2}] - E[E[X | Y]]^{2})$
= $E[Var[X | Y]] + Var[E[X | Y]]$

Laplace transform of a gamma random variable

Let x be $\gamma(a, b)$. Its density function is

$$f_x(x) = e^{-x/b} x^{a-1} b^{-a} \Gamma(a)^{-1}$$

where $\Gamma(a) = \int_0^\infty e^{-x} x^{a-1} dx$. The Laplace transform is derived as follows

$$\begin{split} \varphi_x(u) &= E[e^{ux}] \\ &= \int_0^\infty e^{ux} f_x(x) dx \\ &= \int_0^\infty e^{ux} e^{-x/b} x^{a-1} b^{-a} \Gamma(a)^{-1} dx \\ &= b^{-a} \Gamma(a)^{-1} \int_0^\infty e^{ux - x/b} x^{a-1} dx \\ &= b^{-a} \Gamma(a)^{-1} (1/b - u)^{-a} \int_0^\infty e^{-x} x^{a-1} dx \\ &= b^{-a} \Gamma(a)^{-1} (1 - ub)^{-a} b^a \Gamma(a) \\ &= (1 - ub)^{-a} \end{split}$$

Laplace transform of a Poisson random variable

Let x be $\mathcal{P}(a)$. Its probability function is

$$p_x(k) = e^{-a}a^k(k!)^{-1}.$$

The Laplace transform is derived as follows

$$\varphi_{x}(u) = E[e^{ux}]$$

$$= \sum_{k=0}^{\infty} e^{uk} p_{x}(k)$$

$$= e^{-a} \sum_{k=0}^{\infty} e^{uk} a^{k} (k!)^{-1}$$

$$= e^{-a} \sum_{k=0}^{\infty} (e^{u}a)^{k} (k!)^{-1}$$

$$= e^{-a} e^{ae^{u}}$$

$$= e^{a(e^{u}-1)}$$