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Exercise N◦ 01 [Exponential-affine ZCB Pricing Formula].

Given that Mt,t+1 is exponential-affine in εt+1 (i.e. xt+1) and that the conditional Laplace transform
of xt+1 is exponential-affine in the conditioning variable (Xt) we suggest that the ZCB pricing
formula at date t be an exponential-affine function of Xt and then “we check if it works”. We
proceed in the following way:

a) We suggest B(t, h) = exp(C ′hXt + Dh) and we (equivalently) rewrite the pricing formula in
terms of the payoff B(t+ 1, h− 1) = exp(C ′h−1Xt+1 +Dh−1):

B(t, h) = exp(C ′hXt +Dh)

= Et[Mt,t+1 · · ·Mt+H−1,t+H ]

= Et[Mt,t+1B(t+ 1, h− 1)]

= Et
[
exp

(
−β − α′Xt + Γ′t εt+1 − 1

2 Γ′tΓt
)

exp(C ′h−1Xt+1 +Dh−1)
]
,

b) we do the algebra (calculating the conditional Laplace transform) obtaining:

B(t, h)

= exp(Ch
′Xt +Dh)

= exp
[
−β − α′Xt − 1

2Γ′tΓt +Dh−1
]
× Et[exp

(
Γ′tεt+1 + C ′h−1Xt+1

)
]

= exp
[
−β − α′Xt − 1

2Γ′tΓt +Dh−1 + C ′h−1Φ̃Xt + C ′1,h−1ν
]

×Et[exp (Γt + Σ′C1,h−1)
′εt+1)]

= exp

[(
−α+ Φ̃

′
Ch−1 + (Σγ)′C1,h−1

)′
Xt

+
(
−β + C ′1,h−1(ν + ΣΓ̃) + 1

2C
′
1,h−1(ΣΣ′)C1,h−1 +Dh−1

)]
,
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c) and by identifying the coefficients we find the recursive relations for Ch and Dh characterizing
the pricing formula B(t, h) = exp(C ′hXt +Dh).

Now, the last elements we need to completely determine the pricing formula are the starting con-
ditions for Ch and Dh. We proceed as follows:

given that, by definition of ZCB, we have B(t, 0) = 1, then

exp(C ′0Xt +D0) = 1 ⇐⇒ (C ′0Xt +D0) = 0 ∀ Xt ⇐⇒ C0 = 0 , D0 = 0 .

We can also equivalently write:

given that, by definition of ZCB, we have B(t, 1) = exp(− rt), then

exp(C ′1Xt +D1) = exp(− rt) ⇐⇒ (C ′1Xt +D1) = −rt ∀ Xt ⇐⇒ C1 = −α , D1 = −β .

Exercise N◦ 02 [A different derivation of the Gaussian ATSM - Scalar case].

We know that, under the absence of arbitrage opportunities, there exists a risk-neutral probability
measure Q such that the price at date t for a ZCB of residual maturity h is given by B(t, h) =
EQ
t [exp(−rt − . . .− rt+h−1)]. This means that, the yield-to-maturity formula is given by R(t, h) =
− 1
h lnEQ

t [exp(−rt − . . .− rt+h−1)].

i) We want to determine the yield-to-maturity formula R(t, h) in the case where the scalar factor
(xt) follows the following Gaussian AR(1) process:

xt+1 = ν∗ + ϕ∗xt + σ∗ηt+1 , ηt+1 ∼ N (0, 1) (under Q) ,

and the short rate process is assumed to be rt = β + αxt. We follows the same steps we have
seen during Lecture 4, that is, first we determine the ZCB pricing formula B(t, h) guessing an
exponential-affine (in xt) functional form and then we determine the associated interest rates for-
mula R(t, h).

• First step :

B(t, h) = exp(ch xt + dh)

= EQ
t [exp(−rt − . . .− rt+h−1)]

= EQ
t [exp(−rt)B(t+ 1, h− 1)]

= EQ
t [exp(−β − αxt) exp(ch−1 xt+1 + dh−1)] ,

= exp(−β − αxt + dh−1)E
Q
t [ch−1 xt+1] ,

= exp(−β − αxt + dh−1 + ch−1ν
∗ + ch−1ϕ

∗xt)E
Q
t [ch−1 σ

∗ηt+1] ,

= exp
(
−β − αxt + dh−1 + ch−1ν

∗ + ch−1ϕ
∗xt + 1

2c
2
h−1(σ

∗)2
)

= exp
[
(−α+ ch−1ϕ

∗)xt + (−β + ch−1ν
∗ + 1

2c
2
h−1(σ

∗)2 + dh−1)
]
,
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and therefore, by identification, we find that B(t, h) = exp(ch xt+dh) where (ch, dh) are given
by: 

ch = −α+ ϕ∗ch−1 ,

dh = −β + ch−1ν
∗ +

1

2
c2h−1(σ

∗)2 + dh−1 ,

with c0 = 0 and d0 = 0 given that B(t, t) = 1.

• Second step : the yield-to-maturity formula is clearly given by R(t, h) = − 1
h [chxt + dh] and

therefore we have found the same ZCB price and yield-to-maturity formulas as in the case
presented during Lecture 4.

Indeed, the functional form are the same and the recursive equations are the same. The only
difference is that the methodology specifying the historical dynamics and the SDF Mt,t+1

allows to decompose ν∗ and ϕ∗ in terms of historical and risk-premia parameters : ν∗ = ν+σγo
and ϕ∗ = ϕ + σγ (σ = σ∗). Indeed, giving a value (directly) to (ν∗, ϕ∗, σ∗) or a value to
(ν, ϕ, σ, γo, γ) specify exactly the same recursive equations and therefore the prices are the
same given that the functional form is the same.

Observe that, the assumption rt = β + αxt is made to automatically guarantee that under Q
discounted asset prices are martingales, that is, to automatically satisfy the condition B(t, 1) =
EQ
t [exp(−rt)] = exp(−rt) (rt is known in t). Indeed, from the formula B(t, h) with h = 1 we find

B(t, 1) = exp(c1xt + dh) = exp(−αxt − β) and therefore B(t, 1) = EQ
t [exp(−rt)] = exp(−rt) is

satisfied if and only if rt = β + αxt.

This means that, before starting to calculate B(t, h) = EQ
t [exp(−rt − . . . − rt+h−1)] we have to

impose that Q be an risk-neutral probability measure that is a probability measure such that any
discounted asset price (discounted by the short rate sequence) which in the information of the
investor is a martingale.

ii) If we consider the case in which xt = rt we have:

rt+1 = ν∗ + ϕ∗rt + σ∗ηt+1 , ηt+1 ∼ N (0, 1) (under Q) ,

and following the same steps as before we find B(t, h) = exp(chxt+dh) and R(t, h) = − 1
h [chxt+dh]

with: 
ch = −1 + ϕ∗ch−1 ,

dh = ch−1ν
∗ +

1

2
c2h−1(σ

∗)2 + dh−1 ,

with c0 = 0 and d0 = 0. Observe that, again, these formulas are the same we have presented
during Lecture 4 (and 5) with α = 1 and β = 0. Observe also that the condition B(t, 1) =
EQ
t [exp(−rt)] = exp(−rt) is automatically satisfied.
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Exercise N◦ 03.

(i) Let us assume that Mt,t+1(wt+1) has an exponential-affine form :

Mt,t+1 = exp
[
Γt(wt)

′wt+1 + βt(wt)
]
,

where Γt denotes the market price of factor’s risk function. Since exp(−rt+1) = Et(Mt,t+1) =
exp [ψt(Γt |wt) + βt], the SDF can also be written :

Mt,t+1 = exp
[
−rt+1(wt) + Γ′t(wt)wt+1 − ψt(Γt|wt)

]
and therefore, this specification (function of wt+1 instead of its noise) automatically satisfy the
condition exp(−rt+1) = Et(Mt,t+1).

(ii) The joint historical distribution of wt, denoted by P, is defined by the conditional distribution of
wt+1 given wt, characterized either by the p.d.f. ft(wt+1|wt) or the Laplace transform ϕt(u|wt), or
the Log-Laplace transform ψt(u|wt). The Risk-Neutral (R.N.) dynamics is another joint distribution
of wt, denoted by Q, defined by the conditional p.d.f., with respect to the corresponding conditional
historical probability, given by :

dQt,t+1

dPt,t+1
:= dQt (wt+1|wt) =

Mt,t+1(wt+1)

Et
[
Mt,t+1(wt+1)

]
= exp(rt+1)Mt,t+1(wt+1).

So, the R.N. conditional p.d.f. (with respect to the same measure as the corresponding conditional
historical probability) is :

fQt (wt+1|wt) = ft(wt+1|wt)d
Q
t (wt+1|wt),

and the conditional p.d.f. of the conditional historical distribution with respect to the R.N. one is
given by :

dPt,t+1

dQt,t+1
:= dPt (wt+1|wt) =

1

dQt (wt+1|wt)
.

When the SDF is exponential-affine, we have convenient additional results:

dQt (wt+1|wt) =
exp(Γ′twt+1 + βt)

Et exp(Γ′twt+1 + βt)

= exp [Γ′twt+1 − ψt(Γt)] ,

so dQt is also exponential-affine. The conditional R.N. Laplace transform of the factor wt+1, given
wt, is :

ϕQ
t (u|wt) = EQ

t [exp(u′wt+1)]

= Et exp [(u+ Γt)
′wt+1 − ψt(Γt)]

=
ϕt(u+ Γt)

ϕt(Γt)
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and, consequently, the associated conditional R.N. Log-Laplace transform is :

ψQ
t (u) = ψt(u+ Γt)− ψt(Γt) .

Conversely, we get :
dPt (wt+1|wt) = exp

[
−Γ′twt+1 + ψt(Γt)

]
and, taking u = −Γt in ψQ

t (u), we can write :

ψQ
t (−Γt) = −ψt(Γt)

and, replacing u by u− Γt, we obtain :

ψt(u) = ψQ
t (u− Γt)− ψQ

t (−Γt).

We also have :
dPt (wt+1|wt) = exp

[
−Γ′twt+1 − ψQ

t (−Γt)
]
,

dQt (wt+1|wt) = exp
[
Γ′twt+1 + ψQ

t (−Γt)
]
.

Exercise N◦ 04 [Exercise N◦ 03, continued].

(i) We have a Gaussian AR(1) latent process xt such that:

xt+1 = ν∗ + ϕ∗xt + σ∗ηt+1 , ηt+1 ∼ N (0, 1) (under Q) .

We know that the conditional risk-neutral log-Laplace transform of ηt is given by ψQ
t (−Γt) =

LogEt[exp(−Γt ηt+1)] = exp(Γ2
t /2), and therefore the one-period SDF Mt,t+1 = Mt,t+1(ηt+1) is

given by:
Mt,t+1 = exp

[
−β − αxt + Γtηt+1 + 1

2Γ2
t

]
, (SDF)

Γt = Γ(xt) = (γo + γxt) .

(ii) In order to determine the historical dynamics of xt let us work with the conditional Laplace
transform, and let us remember that for any risk-neutral probability measure Q (equivalent to P)
we have:

dQt,t+1

dPt,t+1
=

Mt,t+1

Et[Mt,t+1]
, and

dPt,t+1

dQt,t+1
=
Et[Mt,t+1]

Mt,t+1

dQ
dP

=
M0,1 . . .MT−1,T

E0[M0,1] . . . ET−1[MT−1,T ]
, and

dP
dQ

=
E0[M0,1] . . . ET−1[MT−1,T ]

M0,1 . . .MT−1,T
.
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Now, we have that the historical Laplace transform of xt+1, conditionally to xt, is given by:

Et[exp(uxt+1)] = EQ
t

[
Et[Mt,t+1]

Mt,t+1
exp(uxt+1)

]
= EQ

t

[
exp

(
−(γo + γxt) ηt+1 − 1

2 (γo + γxt)
2 + uxt+1

)]
= exp

[
u(ν∗ + ϕ∗xt)− 1

2(γo + γxt)
2
]
× EQ

t [exp(−γo − γxt + uσ∗)ηt+1]

= exp
[
u[(ν∗ − σ∗γo) + (ϕ∗ − σ∗γ)xt] + 1

2u
2(σ∗)2

]
= exp

[
u(ν + ϕxt) + 1

2u
2σ2
]
,

This means that, under P, (xt) follows a Gaussian AR(1) process:

xt+1 = ν + ϕxt + σεt+1 , εt+1 ∼ N (0, 1) (under P) ,

where ν = (ν∗ − σ∗γo), ϕ = (ϕ∗ − σ∗γ) and σ∗ = σ. We also find that ηt+1 = εt+1 − Γt.

Even if the ZCB pricing formula can be determined simply making an assumption about the risk-
neutral factor dynamics, the specification of the historical dynamics becomes essential (for instance)
if we need to forecast future interest rates:

Et[R(t+ k, h)] = −ch
h
Et[xt+k]−

dh
h

(forecasts are under P!). Observe that the affine nature of the yield-to-maturity formula makes the
forecast easy to be implemented.

Exercise N◦ 05 [No-arbitrage restrictions for the short and long rate].

We have a bivariate Gaussian VAR(1) ATSM given by:

xt+1 = ν + Φxt + Σεt+1 , εt+1 ∼ N (0, I2) (under P)

Mt,t+1 = exp
[
−β − α′xt + Γ′tεt+1 − 1

2Γ′tΓt
]
, (SDF)

Γt = Γ(xt) = (γo + γ xt) ,

R(t, t+ h) = −Ch
h

′
xt −

Dh

h
,

Ch = −α+ (Φ + Σγ)′Ch−1 = −α+ Φ∗
′
Ch−1 ,

Dh = −β + C ′h−1(ν + Σγo) + 1
2C
′
h−1(ΣΣ′)Ch−1 +Dh−1 ,

C0 = 0, D0 = 0 ,
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where xt = (rt, Rt)
′, with rt = R(t, t+ 1) the yield with the shortest maturity in our data base (it

is the short rate) and Rt = R(t, t+H) the long rate, i.e. the yield with the longest maturity in our
data base.
I have to impose no-arbitrage restrictions on both components of the factor (xt) given that they
contains yields at different maturities.
First, I have to impose that R(t, t + 1) = rt: this condition generates the no-arbitrage restriction
R(t, t+ 1) = β +α′xt = β +α1rt +α2Rt = rt. Clearly, rt = β +α′xt = β +α1rt +α2Rt if and only
if β = 0, α1 = 1 and α2 = 0. These conditions are equivalent to C1 = −(1, 0) and D1 = 0.
Second, let us denote by H the longest maturity in our data base. I have to impose that R(t, t+H) =
Rt for any t. In this case we have:

− 1

H
[C1,H rt + C2,H Rt +DH ] = Rt

⇔ C1,H rt + C2,H Rt +DH = −HRt

⇔ C1,H = 0 , C2,H = −H , DH = 0 ,

that is CH = −H (0, 1)′ and DH = 0.

Exercise N◦ 06 [Conditional distribution of yields when the factor is Gaussian AR(p)].

We have a Gaussian AR(p) Factor-Based term structure model in which the factor (xt) is assumed
latent. For a fixed time to maturity h, the process R = [R(t, h), 0 ≤ t < T ] is an ARMA(p, p− 1)
process of the following type :

Ψ(L)R(t, h) = σCh(L)εt + Ch(1)ν + Ψ(1)δh ,

where Ch(L) = −(c1,h + c2,hL + . . . + cp,hL
p−1)/h is a polynomial of degree (p − 1) in the lag

operator L, δh = −(dh/h), and where the AR polynomial, applying to t, is given by Ψ(L) =
(1− ϕ1L− . . . ϕpLp).

Indeed, we can write the yield-to-maturity formula R(t, h) = −1

h
[c′hXt + dh] in the following way:

R(t, h) = Ch(L)xt + δh ,

where Ch(L) = −(c1,h+c2,hL+ . . .+cp,hL
p−1)/h is the (p−1)th degree polynomial in the backward

shift operator L, and where δh = −(dh/h).

Now, if we apply on the right-hand and left-hand side of this relation the operator Ψ(L) = (1 −
ϕ1L− . . . ϕpLp) operating on t, we can write :

Ψ(L)R(t, h) = Ch(L)Ψ(L)xt + Ψ(1)δh

= Ch(L)[ ν + σεt] + Ψ(1)δh = σCh(L)εt + Ch(1)ν + Ψ(1)δh ,

showing that R = [R(t, h), 0 ≤ t < T ] is an ARMA(p, p − 1) process. Observe that the AR
polynomial is independent of h, while the MA polynomial is not. Moreover, we also highlight the
fact that, when p = 1, any yield follow a Gaussian AR(1) process.
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Exercise N◦ 07 [Conditional p.d.f. of yields when the factor is Gaussian VAR(1)].

We have Gaussian VAR(1) Factor-Based term structure model in which the latent factor (xt) is
K-dimensional. Let us consider, at date t, K yields that we organize in the vector RK(t) =
[R(t, h1), . . . , R(t, hK)]′. Now, the affine relation between this vector of yields and the factor xt can
be written in the following way:

RK(t) = CK xt +DK ,

where CK =


−
c1,h1
h1

. . . −
cK,h1
h1

...
. . .

...

−
c1,hK
hK

. . . −
cK,hK
hK

 , and DK =


−dh1
h1
...

−dhK
hK


which is a system of K equations in K unknowns (the scalar variables in xt). Given the observed
yields RK(t), we can easily solve for xt and write:

xt = C−1K [RK(t)−DK ] .

Now, given that the conditional p.d.f. f(xt+1 |xt) is known (it is the p.d.f. of K-dimensional
conditional Gaussian process with conditional mean Et[xt+1] = ν + Φxt and conditional variance
Vt[xt+1] = Ω), we have that the p.d.f. f(RK(t + 1) |RK(t)) follows directly from f(xt+1 |xt) and
involves the Jacobian of the transformation from RK(t) to xt.
Since the transformation (forgetting t for a while) is x[RK ] = C−1K [RK −DK ], its Jacobian is:

J = det

(
d x[RK ]

dRK

)
= det(C−1K ) =

1

det(CK)

which implies that the historical conditional p.d.f. f(RK(t+ 1) |RK(t)) of the yields is given by:

f(RK(t+ 1) |RK(t)) =
1

det(CK)
f(xt+1 |xt) .

Given the set of observations at times {t1, . . . , tn}, the log-Likelihood function is given by:

L =
n∑
i=1

log f(RK(ti) |RK(ti−1)) ,

assuming f(RK(t1) |RK(t0)) = f(RK(t1)) , i.e., the marginal density .

Observe that this methodology is applied to the case p = 1, and it estimates model parameters
using a number of yields that has to be equal to the dimension of the factor. Chen and Scott (1993)
tackle this problem assuming that additional yields are observed with errors. Let us assume that
M −K additional yield are measured with errors, besides the K observed without errors:

RM−Kt = CM−K xt +DM−K + ηt ,

RM−Kt = [R(t, t+ hK+1), . . . , R(t, t+ hM )]′ ,
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where the conditional distribution of the measurement errors (ηt) is known and given by h(ηt | ηt−1).
Moreover, ηt⊥RM−Kt , ηt⊥RKt . In order to determine the log-Likelihood function associated to the
vector of yields RMt = (RKt

′, RM−Kt
′)′ we have to simply specify the associated conditional p.d.f.

taking into account the above mentioned assumptions:

f(RMt |RMt−1) = f(RMt |RKt−1, ηt−1)

= f(RKt , ηt |RKt−1, ηt−1)

= f(RKt | ηt, RKt−1, ηt−1) f(ηt |RKt−1, ηt−1)

= f(RKt |RKt−1) f(ηt | ηt−1) .

This means that log f(RMt |RMt−1) = log f(RKt |RKt−1) + log f(ηt | ηt−1) and, thus:

L∗(θ) = L(θ) +

T∑
t=1

log h(ηt | ηt−1) ,

assuming h(η1 | η0) = h(η1) , i.e., the marginal density .

Exercise N◦ 08 [Working with the Non-centered Gamma Distribution].

Given that the non-centered Gamma random variable Y can be represented in the following way:
Y

µ
|Z ∼ γ(ν + Z, 1) , ν > 0 ,

Z ∼ P(β) , β > 0 , µ > 0 ,

⇐⇒


Y |Z ∼ γ(ν + Z, µ) , ν > 0 ,

Z ∼ P(β) , β > 0 , µ > 0 ,

then, we can easily determine its mean, variance and Laplace transform. Indeed:

i) Given that Y |Z ∼ γ(ν + Z, µ) and that E(Y ) = E[E(Y |Z)] we easily find that E(Y ) =
E[µ(ν + Z)] = µ ν + µE(Z) = µ ν + µβ.

ii) Given that V (Y ) = E[V (Y |Z)] + V [E(Y |Z)], again we easily find:

V (Y ) = E[V (Y |Z)] + V [E(Y |Z)]

= E[µ2(ν + Z)] + V [µ(ν + Z)]

= ν µ2 + 2µ2β .
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iii) With regard to the Laplace transform, we have:

ϕ(u) = E[exp(uY )] = EZ
[
EY |Z(exp(uY ) |Z)

]
= EZ

[(
1

1− µu

)ν+Z]

=

(
1

1− µu

)ν
EZ

[(
1

1− µu

)Z]

= exp[−ν log(1− µu)]EZ [exp(−Z log(1− µu))]

= exp[−ν log(1− µu)] exp

[
β

uµ

1− uµ

]

= exp

[
−ν log(1− µu) + β

uµ

1− uµ

]
.

Exercise N◦ 09 [Working with the ARG(1) Process].

We have an ARG(1) process (xt) defined as:

xt+1

µ
|zt+1 ∼ γ(ν + zt+1, 1) , ν > 0 ,

zt+1|xt ∼ P(ρxt/µ) , ρ > 0 , µ > 0 , ρ = β µ

then, following the previous exercise, we can write:

i)
E(xt+1 |xt) = E[E(xt+1 | zt+1 , xt) |xt] = E[(µ(ν + zt+1)) |xt]

= ν µ+ µE(zt+1 |xt) = ν µ+ µβ xt = ν µ+ ρ xt .

ii)
V (xt+1 |xt) = E[V (xt+1 | zt+1 , xt) |xt] + V [E(xt+1 | zt+1 , xt) |xt]

= E[µ2(ν + zt+1) |xt] + V [µ(ν + zt+1) |xt]

= µ2 ν + µ2E(zt+1 |xt) + µ2 V (zt+1 |xt)

= µ2 ν + 2µ2 β xt = µ2 ν + 2µρxt .

iii) Under the assumption of stationarity (0 < ρ < 1), we have E(xt) = E(x) and V (xt) = V (x)
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for all t. Then, we can write:

E(xt) = E[E(xt |xt−1)] = E[ν µ+ ρ xt−1] = ν µ+ ρE(xt−1)

⇒ under stationarity E(x) = ν µ+ ρE(x)

⇒ E(x) =
µ ν

1− ρ
,

and therefore the marginal mean is, for every t, given by E(xt) =
µ ν

1− ρ
.

iv) In the same, we can work for the marginal variance:

V (xt) = E[V (xt |xt−1)] + V [E(xt |xt−1)]

= E[µ2 ν + 2µρxt−1] + V [ν µ+ ρ xt−1]

= µ2 ν + 2µρE(xt−1) + ρ2V (xt−1)

= µ2 ν + 2µρ
µ ν

1− ρ
+ ρ2V (xt−1)

and, therefore, under stationarity we can write:

V (x) =
1

1− ρ2

[
µ2 ν + 2µρ

µ ν

1− ρ

]

=
1

1− ρ2
µ2 ν(1 + ρ)

(1− ρ)
=

µ2 ν

(1− ρ)2
.

v) With regard to the conditional Laplace transform, we have:

ϕt(u) = E[exp(uxt+1) |xt] = E [E(exp(uxt+1) | zt+1, xt) |xt]

= E

[(
1

1− µu

)ν+zt+1

|xt

]

=

(
1

1− µu

)ν
E

[(
1

1− µu

)zt+1

|xt
]

= exp[−ν log(1− µu)]E[exp(−zt+1 log(1− µu)) |xt]

= exp[−ν log(1− µu)] exp

[
β xt

uµ

1− uµ

]

= exp

[
−ν log(1− µu) +

ρ u

1− uµ
xt

]
.
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vi) Our ARG(1) process, with E(xt+1 |xt) = ν µ+ ρ xt and V (xt+1 |xt) = µ2 ν + 2µρxt, can be
represented by the following weak positive AR(1) model:

xt+1 = ν µ+ ρ xt + εt+1

where, by construction, E(εt+1 | εt) = E(xt+1 − ν µ− ρ xt |xt) = E(xt+1 |xt)− ν µ− ρ xt = 0
and therefore E(εt+1) = E[E(εt+1 | εt)] = 0.

With regard to the variance of the noise, we have V (εt+1 | εt) = V (xt+1 − ν µ − ρ xt |xt) =
V (xt+1 |xt) = µ2 ν + 2µρxt. From this result we easily find that:

V (εt+1) = V [E(εt+1 | εt)] + E[V (εt+1 | εt)]

= E[V (εt+1 | εt)] = E[V (xt+1 − ν µ− ρ xt |xt)]

= E[µ2 ν + 2µρxt] = µ2 ν + 2µ2 ρ
ν

1− ρ

Exercise N◦ 10 [The ARG(1) and ARG(p) Positive Affine Yield Curve].

i) We have that the scalar latent factor xt has an historical dynamics given by the following ARG(1)
process:

xt+1

µ
| zt+1 ∼ γ(ν + zt+1, 1) , ν > 0 ,

zt+1 |xt ∼ P
(
ρxt
µ

)
, ρ = β µ ,

that is, xt+1 = νµ + ρxt + εt+1 (weak positive AR(1) representation). This means that, under P,
the Laplace transform of xt+1, conditionally to xt, is given by:

E
[
exp(uxt+1) |xt

]
= exp

[
ρu

1− uµ
xt − ν log(1− uµ)

]
,

= exp [a(u; ρ, µ)xt + b(u; ν, µ)] .

and the Laplace transform of εt+1, conditionally to εt, is given by:

E
[
exp(uεt+1) | εt

]
= E

{
exp

[
u(xt+1 − νµ− ρ xt) |xt

]}
,

= exp [a(u; ρ, µ)xt + b(u; ν, µ)− u (ν µ+ ρ xt)] ,

= exp [(a(u; ρ, µ)− uρ)xt + b(u; ν, µ)− u ν µ] .

Given that the SDF is:

Mt,t+1 = exp [−β − αxt + Γt εt+1] exp [−a (Γt; ρ, µ) xt − b (Γt; ν, µ) + Γt (ν µ+ ρ xt)] ,
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we can now write the following:

B(t, t+ h) = exp(ch xt + dh)

= Et[Mt,t+1 · · ·Mt+H−1,t+H ]

= Et[Mt,t+1B(t+ 1, t+ h)]

= Et {exp [−β − αxt + Γt εt+1] exp [−a (Γt; ρ, µ) xt − b (Γt; ν, µ) + Γt (ν µ+ ρ xt)]

exp(ch−1 xt+1 + dh−1)}

= exp [−β − αxt − a (Γt; ρ, µ) xt − b (Γt; ν, µ) + Γt (ν µ+ ρ xt) + dh−1]

Et[exp(Γt εt+1 + ch−1 xt+1)]

= exp [−β − αxt − a (Γt; ρ, µ) xt − b (Γt; ν, µ) + Γt (ν µ+ ρ xt) + ch−1 (νµ+ ρ xt) + dh−1]

Et[exp((Γt + ch−1) εt+1)]

= exp {−β − αxt + [a (Γt + ch−1; ρ, µ)− a (Γt; ρ, µ)]xt+

[b (Γt + ch−1; ν, µ)− b (Γt; ν, µ)] + dh−1}

= exp {[−α+ a (ch−1; ρ
∗, µ∗)]xt + [−β + b (ch−1; ν, µ

∗) + dh−1]}

with ρ∗ =
ρ

(1− Γtµ)2
and µ∗ =

µ

1− Γtµ
. Thus, if we identify the coefficients, we find:



ch = −α+ [a(ch−1 + Γt; ρ, µ)− a(Γt; ρ, µ)]

= −α+ a(ch−1; ρ
∗, µ∗) ,

dh = −β + [b(ch−1 + Γt; ν, µ)− b(Γt; ν, µ)] + dh−1

= −β + b(ch−1; ν, µ
∗) + dh−1 .

From the condition B(t, t) = 1 we immediately find c0 = 0, d0 = 0.

ii) We have that the scalar latent factor xt has an historical dynamics given by the following
ARG(p) process:

xt+1

µ
| zt+1 ∼ γ(ν + zt+1, 1) , ν > 0 ,

zt+1 |xt ∼ P
(
ρ1xt + . . .+ ρpxt−p+1

µ

)
, ρi = βi µ , i ∈ {1, . . . , p} .
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that is, xt+1 = νµ + ρ′Xt + εt+1 with ρ = (ρ1, . . . , ρp)
′ and Xt = (xt, . . . , xt−p+1)

′ (weak positive
AR(p) representation). This means that, under P, the Laplace transform of xt+1, conditionally to
xt, is given by:

E
[
exp(uxt+1) |xt

]
= exp

[
u

1− uµ
(ρ1 xt + . . .+ ρp xt−p+1)− ν log(1− uµ)

]
,

= exp

[
u

1− uµ
ρ′Xt − ν log(1− uµ)

]
,

= exp [a(u; ρ, µ) ′Xt + b(u; ν, µ)] ,

and the Laplace transform of εt+1, conditionally to εt, is given by:

E
[
exp(uεt+1) | εt

]
= E

{
exp

[
u(xt+1 − νµ− ρ′Xt) |xt

]}
,

= exp [a(u; ρ, µ)′Xt + b(u; ν, µ)− u (ν µ+ ρ′Xt)] ,

= exp [(a(u; ρ, µ)− uρ)′Xt + b(u; ν, µ)− u ν µ] .

Given that the SDF is:

Mt,t+1 = exp
[
−β − α′Xt + Γt εt+1

]
exp

[
−a (Γt; ρ, µ)′ Xt − b (Γt; ν, µ) + Γt (ν µ+ ρ′Xt)

]
,

we can now write the following:

B(t, t+ h) = exp(c′hXt + dh)

= Et[Mt,t+1 · · ·Mt+H−1,t+H ]

= Et[Mt,t+1B(t+ 1, t+ h)]

= Et
{

exp [−β − α′Xt + Γt εt+1] exp
[
−a (Γt; ρ, µ)′ Xt − b (Γt; ν, µ) + Γt (ν µ+ ρ′Xt)

]
exp(c′h−1Xt+1 + dh−1)

}
= exp

[
−β − α′Xt − a (Γt; ρ, µ)′ Xt − b (Γt; ν, µ) + Γt (ν µ+ ρ′Xt) + dh−1

]
Et[exp(Γt εt+1 + c1,h−1 xt+1 + c′2,h−1 X̃t)]

where c1,h−1 is the first component of the p-dimensional vector ch−1 = (c1,h−1, c
′
2,h−1)

′ and where
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X̃t = (xt, . . . , xt−p+2)
′. This means that:

B(t, t+ h) = exp(c′hXt + dh)

= exp
[
−β − α′Xt − a (Γt; ρ, µ)′ Xt − b (Γt; ν, µ) + Γt (ν µ+ ρ′Xt) + c1,h−1 (νµ+ ρ′Xt)

+c′2,h−1 X̃t + dh−1

]
Et[exp((Γt + c1,h−1) εt+1)]

= exp {−β − α′Xt + [a (Γt + c1,h−1; ρ, µ)− a (Γt; ρ, µ) + c̄h−1]
′Xt

+[b (Γt + c1,h−1; ν, µ)− b (Γt; ν, µ)] + dh−1}

= exp {[−α+ a (c1,h−1; ρ
∗, µ∗) + c̄h−1]

′Xt + [−β + b (ch−1; ν, µ
∗) + dh−1]}

where c̄h−1 = (c′2,h−1, 0)′ and with ρ∗ =
ρ

(1− Γtµ)2
and µ∗ =

µ

1− Γtµ
. Thus, if we identify the

coefficients, we find:

ch = −α+ [a(c1,h−1 + Γt; ρ, µ)− a(Γt; ρ, µ)] + c̄h−1

= −α+ a(c1,h−1; ρ
∗, µ∗) + c̄h−1 ,

dh = −β + [b(c1,h−1 + Γt; ν, µ)− b(Γt; ν, µ)] + dh−1

= −β + b(c1,h−1; ν, µ
∗) + dh−1 .

From the condition B(t, t) = 1 we immediately find c0 = 0, d0 = 0.

Exercise N◦ 11 [The ARG(p) Risk-Neutral Laplace Transform].

Let us consider the scalar latent factor xt which is described, under P, by the following ARG(1)
process:

xt+1

µ
| zt+1 ∼ γ(ν + zt+1, 1) , ν > 0 ,

zt+1 |xt ∼ P
(
ρxt
µ

)
, ρ = β µ .

This means that its conditional historical Laplace transform is given by:

E
[
exp(uxt+1) |xt

]
= exp

[
ρu

1− uµ
xt − ν log(1− uµ)

]
,

= exp [a(u; ρ, µ)xt + b(u; ν, µ)] .

Let us assume, moreover, that the one-period SDF Mt,t+1 is given by:

Mt,t+1 = exp [−β − αxt + Γt εt+1] exp [−a (Γt; ρ, µ) xt − b (Γt; ν, µ) + Γt (ν µ+ ρ xt)] .
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The conditional Laplace transform, under the risk-neutral equivalent martingale measure Q (we
use the money-market account as numéraire!) is given by:

EQ
t [exp(uxt+1)] = Et

[
Mt,t+1

Et(Mt,t+1)
exp(uxt+1)

]
= Et {exp [Γt εt+1 − a (Γt; ρ, µ) xt − b (Γt; ν, µ) + Γt (ν µ+ ρ xt) + uxt+1]}

= exp [−a (Γt; ρ, µ) xt − b (Γt; ν, µ) + Γt (ν µ+ ρ xt) + u (ν µ+ ρ xt)] Et {exp [(Γt + u) εt+1]}

= exp {[a (Γt + u; ρ, µ)− a (Γt; ρ, µ)]xt + [b (Γt + u; ν, µ)− b (Γt; ν, µ)]}

= exp {a (u; ρ∗, µ∗) xt + b (u; ν, µ∗)}

where:
a(u+ Γt; ρ, µ)− a(Γt; ρ, µ) = a(u; ρ∗, µ∗)

b(u+ Γt; ν, µ)− b(Γt; ν, µ) = b(u; ν, µ∗)

with ρ∗ =
ρ

(1− Γtµ)2
, µ∗ =

µ

1− Γtµ
.

Let us consider now a scalar latent factor xt with an historical dynamics described by the following
ARG(p) process:

xt+1

µ
| zt+1 ∼ γ(ν + zt+1, 1) , ν > 0 ,

zt+1 |xt ∼ P
(
ρ1xt + . . .+ ρpxt−p+1

µ

)
, ρi = βi µ , i ∈ {1, . . . , p} .

Its conditional historical Laplace transform is therefore given by:

E
[
exp(uxt+1) |xt

]
= exp

[
u

1− uµ
ρ′Xt − ν log(1− uµ)

]
,

= exp [a(u; ρ, µ)′Xt + b(u; ν, µ)] .

where ρ = (ρ1, . . . , ρp)
′ and Xt = (xt, . . . , xt−p+1)

′. Let us assume, moreover, that the one-period
SDF Mt,t+1 is given by:

Mt,t+1 = exp [−β − α′Xt + Γt εt+1] exp
[
−a (Γt; ρ, µ)′ Xt − b (Γt; ν, µ) + Γt (ν µ+ ρ ′Xt)

]
,

where Γt = γo + γ′Xt. The conditional Laplace transform, under the risk-neutral equivalent mar-
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tingale measure Q is given by:

EQ
t [exp(uxt+1)] = Et

[
Mt,t+1

Et(Mt,t+1)
exp(uxt+1)

]
= Et

{
exp

[
Γt εt+1 − a (Γt; ρ, µ)′ Xt − b (Γt; ν, µ) + Γt (ν µ+ ρ ′Xt) + uxt+1

]}
= exp [−a (Γt; ρ, µ) ′Xt − b (Γt; ν, µ) + Γt (ν µ+ ρ ′Xt) + u (ν µ+ ρ ′Xt)] Et {exp [(Γt + u) εt+1]}

= exp {[a (Γt + u; ρ, µ)− a (Γt; ρ, µ)] ′Xt + [b (Γt + u; ν, µ)− b (Γt; ν, µ)]}

= exp {a (u; ρ∗, µ∗) ′Xt + b (u; ν, µ∗)}

where:
a(u+ Γt; ρ, µ)− a(Γt; ρ, µ) = a(u; ρ∗, µ∗)

b(u+ Γt; ν, µ)− b(Γt; ν, µ) = b(u; ν, µ∗)

with ρ∗ =
1

(1− Γtµ)2
ρ , µ∗ =

µ

1− Γtµ
.
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