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5.1 An Empirical Analysis of Gaussian ATSMs

5.1.1 Description of the Data

� The CRSP data set on the U. S. term structure of interest rates (treasury zero-

coupon bond yields), that we consider in the following application, covers the

period from June 1964 to December 1995 and contains 379 monthly observations

for each of the nine maturities : 1, 3, 6 and 9 months and 1, 2, 3, 4 and 5 years.

� Summary statistics about the above mentioned (annualized) yields are presented

in Table 1 :
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Table 1 : Summary Statistics on U. S. Monthly Yields from June 1964 to December 1995.

ACF(k) indicates the empirical autocorrelation between yields R(t, h) and R(t− k, h), with h and

k expressed on a monthly basis.

Maturity 1-m 3-m 6-m 9-m 1-yr 2-yr 3-yr 4-yr 5-yr

Mean 0.0645 0.0672 0.0694 0.0709 0.0713 0.0734 0.0750 0.0762 0.0769
Std. Dev. 0.0265 0.0271 0.0270 0.0269 0.0260 0.0252 0.0244 0.0240 0.0237
Skewness 1.2111 1.2118 1.1518 1.1013 1.0307 0.9778 0.9615 0.9263 0.8791
Kurtosis 4.5902 4.5237 4.3147 4.1605 3.9098 3.6612 3.5897 3.5063 3.3531
Minimum 0.0265 0.0277 0.0287 0.0299 0.0311 0.0366 0.0387 0.0397 0.0398
Maximum 0.1640 0.1612 0.1655 0.1644 0.1581 0.1564 0.1556 0.1582 0.1500

ACF(1) 0.9587 0.9731 0.9747 0.9745 0.9727 0.9780 0.9797 0.9802 0.9822
ACF(5) 0.8288 0.8531 0.8579 0.8588 0.8604 0.8783 0.8915 0.8986 0.9053
ACF(10) 0.7278 0.7590 0.7691 0.7699 0.7683 0.7885 0.8021 0.8075 0.8212
ACF(20) 0.4303 0.4631 0.4880 0.4996 0.5156 0.5742 0.6051 0.6193 0.6431
ACF(30) 0.2548 0.2682 0.3016 0.3213 0.3518 0.4358 0.4725 0.4994 0.5187
ACF(40) 0.1362 0.1415 0.1677 0.1853 0.2160 0.3056 0.3427 0.3780 0.3961
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� The term structure of ZCB yields is, on average:

• upward sloping

• and the yields with larger standard deviation, positive skewness and kurtosis

are those with shorter maturities.

• Moreover, yields are highly autocorrelated with a persistence which is in-

creasing with the time to maturity.
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5.1.2 Estimated Models

� In the present empirical analysis we follow an endogenous approach, given that

it gives several important advantages coming from the observations we have

about the factor, that is, the short rate in the scalar case, or yields at different

maturities in the multivariate framework.

� First we are able to detect stylized facts giving us the possibility to justify the

AR(p) model we propose for the historical dynamics of (xt) : indeed, a large

empirical literature on bond yields show that interest rates have an historical

multi-lag dynamics [see, among the others, Hamilton (1989), Christiansen and

Lund (2003), Cochrane and Piazzesi (2005)].
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� Second, observations about the Gaussian-distributed factor lead to an exact

maximum likelihood estimation of historical parameters: in this way, we are able

to test hypotheses using likelihood ratio statistics, and rank the models in terms

of various information criteria.

� Finally, the difference between directly observed and estimated factor values

determine model residuals that can be used to derive various diagnostic criteria.
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5.1.3 Estimation Method

� The methodology we follow to estimate the parameters of the endogenous Multi-

Lag term structure models is based on a consistent two-step procedure.

� In the first step, thanks to observations on the K-dimensional endogenous factor

(xt), we estimate the [K(1 +Kp) + (K(K + 1)/2)]-dimensional vector of param-

eters ΘP = [ν ′, vec(Φ)′, vech(ΣΣ′)′]′, characterizing the historical dynamics (xt),

by Maximum Likelihood (ML).

� In the case of a Gaussian VAR(p) process, the ML estimator coincides with the

OLS estimator.
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OLS Estimation of a Gaussian VAR(p) process with observable factor

� Notation: X := (x1, . . . , xT) is (K,T ) matrix of observations; B := (ν,Φ1, . . . ,Φp)

is (K,Kp+ 1) matrix of parameters;

� Zt :=


1
xt
xt−1

...
xt−p+1

 , Z := (Z0, . . . , ZT−1) is ((Kp+ 1), T ) matrix.

� U := (ε1, . . . , εT) is (K,T ) matrix. We, thus, can write X = B Z + U .

� x := vec(X) is (TK,1) vector, β := vec(B) is (K2p+K,1) vector.
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� OLS estimator : vec(B̂) = β̂ = vec(XZ′(ZZ′)−1);

� Given that Ω = E(εt ε′t), we estimate this matrix by:

Ω̂ =
1

T

T∑
t=1

ε̂t ε̂
′
t =

1

T
Û Û ′ =

1

T
(X− B̂ Z) (X− B̂ Z) =

1

T
X (IT − Z′(ZZ′)−1 Z)X′ .

� How do we select the number of lags p (VAR order selection) in the VAR(p)

model ?

a) minimizing the Forecast Mean Square Error we obtain a criterion called Final

Prediction Error (FPE):

FPE(p) =

[
T +Kp+ 1

T −Kp− 1

]K
det(Ω̂(p)) .
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b) Akaike’s Information Criterion (AIC): AIC(p) = ln det(Ω̂(p)) +
2 pK2

T
;

c) Hannan-Quinn Criterion (HQ): HQ(p) = ln det(Ω̂(p)) +
2 ln lnT

T
pK2;

d) Schwarz Information Criterion (SC): SC(p) = ln det(Ω̂(p)) +
lnT

T
pK2;

• the selected AR order p is the one minimizing the criterion.

• Small sample comparisons: p(SC) ≤ p(AIC) if T ≥ 8; p(SC) ≤ p(HQ) for all T ;

p(HQ) ≤ p(AIC) if T ≥ 16.
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� In the second step, using observations on yields with maturities different from

those used in the first step and for a given estimates of vech(ΣΣ′), we estimate

the [K(1 + Kp)]-dimensional vector of parameters ΘQ = [(ν∗)′, vec(Φ∗)′]′, char-

acterizing the risk-neutral dynamics of (xt), by minimizing the sum of squared

fitting errors between the observed and theoretical yields.

� In other words, in this second step and for a given Θ̂P, we estimate (γo, Γ̃).

� More precisely, in the scalar case, we estimate ΘQ by nonlinear lest squares

(NLLS), while, in the multivariate case, these parameters are estimated by

Constrained NLLS.
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� The constraints are imposed to satisfy internal consistency conditions on (Ch, Dh)

implied by the absence of arbitrage opportunity principle [see Lecture 4 and next

slides].

� Given the complete set of 9 maturities of our data base, and given a number m

of yields used to estimate the vector of historical parameters ΘP, we denote by

H∗m the set of remaining maturities used to estimate the vector of risk-neutral

parameters ΘQ.

� In the AR(p) Factor-Based case, xt is the one-month yield to maturity R(t, t +

1m) = rt expressed at a monthly frequency.
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� In the bivariate VAR(p) Factor-Based case the factor is given by :

xt = [R(t, t+ 1m), R(t, t+ 60m)−R(t, t+ 1m)]′ ,

where [R(t, t+ 60m)−R(t, t+ 1m)] is the spread at date t between the five-year

and one-month yield to maturity, expressed at a monthly frequency.

� The NLLS estimator for the AR(p) case, is determined by :
Θ̂Q = ArgminΘQ S

2(ΘQ),

S2(ΘQ) =
T∑
t=p

∑
h∈H∗

1

[Ro(t, t+ h)−R(t, t+ h)]2,
(1)

given the set H∗1 of maturities used to estimate the risk-neutral parameters;

Ro(t, t+ h) is the observed yield, while R(t, t+ h) is the model-implied one.
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� The constrained NLLS estimator, in our bivariate model specification, is given

by : 

Θ̂Q = ArgminΘQ S
2(ΘQ)

S2(ΘQ) =
T∑
t=p

∑
h∈H∗

2

[Ro(t, t+ h)−R(t, t+ h)]2,

s. t.
T∑
t=p

[Ro(t, t+ 60m)−R(t, t+ 60m)]2 = 0 ,

(2)

� The constraint in the minimization program (2) guarantees the absence of arbi-

trage opportunity on the five-year yield to maturity.
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5.1.4 Results for the AR(p) Factor-Based Term Structure Models

� The maximum value of the mean Log-Likelihood and the values of the estimated

vector of parameters ΘP = (ν, ϕ1, . . . , ϕp, σ)′ of the AR(p) Factor-Based Term

Structure models, for p ∈ {1, . . . ,6}, are presented in Tables 2 and 3 [the t-values

are given in parenthesis].

� We denote with mlogL the mean log-Likelihood of the AR(p) model : mlogL =

logL(ΘP|x1, . . . , xT−p)/(T − p).

� The Akaike Information Criterion (AIC) (for ranking among models) is given by

2mlogL− (2k/(T − p)), with k denoting the dimension of ΘP.
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Table 2 : AR(p) Factor-Based Term Structure models. Maximum value of the mean

Log-Likelihood, AIC and parameter estimates of ν and σ. (∗∗) denotes a parameter significant

at 0.05; (∗) denotes a parameter significant at 0.1.

AR(1) AR(2) AR(3) AR(4) AR(5) AR(6)

mlogL 5.95657 5.95868 5.96082 5.96134 5.97224 5.97092

AIC 11.8973 11.8961 11.8950 11.8907 11.9071 11.8990

ν 0.00023 0.00021 0.00023 0.00021 0.00019 0.00019

[2.6725] ∗∗ [2.4822] ∗∗ [2.6598] ∗∗ [2.4761] ∗∗ [2.1571] ∗∗ [2.1262] ∗∗

σ2 0.00000039 0.00000039 0.00000039 0.00000039 0.00000038 0.00000038

[13.7483] ∗∗ [13.7301] ∗∗ [13.7118] ∗∗ [13.6937] ∗∗ [13.6754] ∗∗ [13.6571] ∗∗
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Table 3 : AR(p) Factor-Based Term Structure models Parameter estimates of (ϕ1, . . . , ϕp).

(∗∗) denotes a parameter significant at 0.05; (∗) denotes a parameter significant at 0.1.

AR(1) AR(2) AR(3) AR(4) AR(5) AR(6)

ϕ1 0.9580 ∗∗ 0.8798 ∗∗ 0.8861 ∗∗ 0.8912 ∗∗ 0.8814 ∗∗ 0.8806 ∗∗

[65.5620] [17.2393] [17.1525] [17.1688] [17.1628] [16.9714]

ϕ2 0.0811 0.1547 ∗∗ 0.1456 ∗∗ 0.1672 ∗∗ 0.1675 ∗∗

[1.5938] [2.2869] [2.0843] [2.4260] [2.3885]

ϕ3 −0.0829 ∗ −0.1372 ∗ −0.1595 ∗∗ −0.1586 ∗∗

[−1.6459] [−1.9204] [−2.3048] [−2.2623]

ϕ4 0.0608 −0.0790 −0.0798
[1.1455] [−1.1788] [−1.1240]

ϕ5 0.1557 ∗∗ 0.1510 ∗∗

[3.1048] [2.4443]

ϕ6 0.0053
[0.1232]
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� An examination of the above displayed parameter estimates show, first of all,

that the historical dynamics of the (one-month to maturity) short rate is not

Markovian of order one, given that, in the AR(5) and AR(6) specifications, the

parameters (ϕ1, ϕ2, ϕ3, ϕ5) are always significative.

� The minimum value of the mean NLLS criterion [S2(Θ̂Q)/T ∗] and the values of

the estimated vector of risk-neutral parameters ΘQ = (ν∗, ϕ∗1, . . . , ϕ
∗
p), with p ∈

{1, . . . ,6}, are presented in Tables 5 and 6 [the t-values are given in parenthesis].

We also rank the models in terms of the Root Mean Square Error (RMSE) and

Mean Absolute Error (MAE).
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Table 4 : AR(p) Factor-Based Term Structure models. Minimum value of the mean NLLS

criterion, RMSE, MAE and parameter estimates of ν∗. (∗∗) denotes a parameter significant at

0.05; (∗) denotes a parameter significant at 0.1.

AR(1) AR(2) AR(3) AR(4) AR(5) AR(6)

S2(Θ̂Q)/T ∗ 0.00000054 0.00000051 0.00000050 0.00000048 0.00000047 0.00000046

RMSE 0.000736 0.000716 0.000709 0.000696 0.000687 0.000679

MAE 0.000530 0.000526 0.000528 0.000524 0.000517 0.000509

ν∗ 0.000110 0.000151 0.000152 0.000148 0.000148 0.000152

[33.2526] ∗∗ [22.6031] ∗∗ [22.9266] ∗∗ [22.9794] ∗∗ [22.7051] ∗∗ [22.4479] ∗∗
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Table 5 : AR(p) Factor-Based Term Structure models. Parameter estimates of (ϕ∗1, . . . , ϕ
∗
p).

(∗∗) denotes a parameter significant at 0.05; (∗) denotes a parameter significant at 0.1.

AR(1) AR(2) AR(3) AR(4) AR(5) AR(6)

ϕ∗1 0.9899 ∗∗ 0.5076 ∗∗ 0.7333 ∗∗ 0.7758 ∗∗ 0.7382 ∗∗ 0.7037 ∗∗

[1877] [9.6003] [14.2703] [15.4922] [14.2057] [13.3209]

ϕ∗2 0.4788 ∗∗ −0.0299 0.2291 ∗∗ 0.2947 ∗∗ 0.2998 ∗∗

[9.1313] [−0.4132] [2.8931] [3.6124] [3.6802]

ϕ∗3 0.2832 ∗∗ −0.3860 ∗∗ −0.1600 ∗∗ −0.1069
[7.5221] [−5.3681] [−2.0834] [−1.3898]

ϕ∗4 0.3685 ∗∗ −0.1977 ∗∗ 0.0123
[10.2233] [−2.6864] [0.1609]

ϕ∗5 0.3126 ∗∗ −0.2173 ∗∗

[8.4180] [−2.9386]

ϕ∗6 0.2961 ∗∗

[7.7697]
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5.1.5 Results for the bivariate VAR(p) Factor-Based Term Structure Models

� As in the scalar case, we present the maximum value of the mean Log-Likelihood

and the values of the estimated vector of parameters ΘP = [ν ′, vec(Φ)′, vech(ΣΣ′)′]′

of the bivariate VAR(p) Factor-Based Term Structure models, for an AR order

p = 1 and p = 2.

� These results are presented in Tables 6 and 7. We have also estimated the

historical parameters of the above mentioned bivariate VAR(p) model, for p

larger than 2, but the AIC criterion has indicated the first two AR orders as the

preferred ones.
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Table 6 : VAR(p) Factor-Based Term Structure models. (∗∗) denotes a parameter significant

at 0.05; (∗) denotes a parameter significant at 0.1.

VAR(1) VAR(2)

mlogL 12.6403 12.6837

AIC 25.2330 25.2984

ν1 0.000065 0.000132
[0.5856] [1.2262]

ν2 0.000080 0.000026
[0.8157] [0.2701]

σ2
1 0.00000039 0.00000036

[5.94750] ∗∗ [6.02614] ∗∗

σ21 -0.00000028 -0.00000026
[-6.0995] ∗∗ [-6.2100] ∗∗

σ2
2 0.00000030 0.00000028

[7.6713] ∗∗ [8.0731] ∗∗
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Table 7 : VAR(1) and VAR(2) Factor-Based Term Structure models. Parameter estimates of

(ϕ1, ϕ2). (∗∗) denotes a parameter significant at 0.05; (∗) denotes a parameter significant at 0.1.

VAR(1) VAR(2)

Φ1 0.9742 0.0719 1.3318 0.6207

[59.8835] ∗∗ [2.2174] ∗∗ [15.0111] ∗∗ [7.0095] ∗∗

0.0091 0.8769 −0.2744 0.4353

[0.6388] [30.7835] ∗∗ [-3.4988] ∗∗ [5.5601] ∗∗

Φ2 −0.3648 −0.5762

[-3.6117] ∗∗ [-5.8201] ∗∗

0.2893 0.4642

[3.2397] ∗∗ [5.3020] ∗∗
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� If we consider the parameter estimates of Tables 6 and 7, we observe that the

joint historical dynamics of short rate and spread is not Markovian of order one,

given that, in the VAR(2) specification, the parameters in the second autore-

gressive matrix ϕ2 are significantly different from zero.

� Moreover, the AIC indicates this model as the preferred one. Table 6 shows also

that the constant term (ν1, ν2)′ is not significative for both AR orders.

� We present the minimum value of the mean NLLS criterion [S2(Θ̂Q)/T ∗] and the

values of the estimated vector of risk-neutral parameters ΘQ = [(ν∗)′, vec(Φ∗)′]′,

for the bivariate VAR(1) and VAR(2) Factor-Based Term Structure models, in

Tables 8 and 9.
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Table 8 : VAR(p) Factor-Based Term Structure models. Minimum value of the mean NLLS

criterion, RMSE, MAE and parameter estimates of (ν∗1, ν
∗
2). (∗∗) denotes a parameter significant

at 0.05; (∗) denotes a parameter significant at 0.1.

VAR(1) VAR(2)

S2(θ̂Q)/T ∗ 0.00000009 0.00000008

RMSE 0.000297 0.000283

MAE 0.000208 0.000198

ν∗1 −0.000058 −0.000055

[−6.6459] ∗∗ [−4.9423] ∗∗

ν∗2 0.000072 0.000071

[5.7860] ∗∗ [4.5783] ∗∗

29



Table 9 : VAR(1) and VAR(2) Factor-Based Term Structure models. Parameter estimates of

(Φ∗1,Φ
∗
2). (∗∗) denotes a parameter significant at 0.05; (∗) denotes a parameter significant at

0.1.

VAR(1) VAR(2)

Φ∗1 1.0131 0.1105 1.3154 0.6020

[805.8869] ∗∗ [34.5743] ∗∗ [28.4716] ∗∗ [9.5120] ∗∗

−0.0156 0.9072 −0.2528 0.4142

[-8.6611] ∗∗ [203.2978] ∗∗ [-3.5778] ∗∗ [4.2509] ∗∗

Φ∗2 −0.3004 −0.4890

[-6.5177] ∗∗ [-7.8923] ∗∗

0.2342 0.4839

[3.3244] ∗∗ [5.0769] ∗∗
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� We find that, also in this bivariate risk-neutral (pricing) framework, the lagged

values of the short rate and spread play an important role in the model specifi-

cation. One may observe the significativity of all risk-neutral AR coefficients in

the VAR(2) specification.

� In other words, a VAR(2) specification for the historical and risk-neutral dynamics

of the factor driving term structure shapes, lead to propose a bivariate term

structure model which is able to fit yields to maturity better than the VAR(1)

and AR(p) specification.
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5.1.6 In-sample fit of the Yield Curve

� Summary of in-sample fit performances, using RMSE and MAE.

� The bivariate setting strongly dominate the scalar one, regardless the number of

lags.

� In the bivariate setting, the introduction of an additional lag (marginally) im-

proves the fitting performance.

AR(6) VAR(1) VAR(2)

RMSE 0.000679 0.000297 0.000283

MAE 0.000509 0.000208 0.000198
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5.1.7 Do these models explain the Violation of the EHT ?

� Short Horizon Expectation Hypothesis Tests : lags are useful !

Short Horizon m = 3 months m = 6 months m = 9 months

h = 6 months -0.6942 (0.2533)

2-Factor VAR(1) 0.5828 (0.3485)

2-Factor VAR(2) -0.3800 (0.3837)

h = 9 months -0.8863 (0.3238) -0.4023 (0.2429)

2-Factor VAR(1) 0.4133 (0.3469) 0.4722 (0.2693)

2-Factor VAR(2) -0.5480 (0.3960) -0.3890 (0.3182)

h = 12 months -1.3226 (0.3530) -0.7867 (0.2381) -0.4371 (0.1312)

2-Factor VAR(1) 0.2454 (0.3486) 0.3187 (0.2710) 0.3796 (0.2430)

2-Factor VAR(2) -0.6935 (0.4069) -0.5272 (0.3248) -0.3675 (0.2930)
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� Long Horizon Expectation Hypothesis Tests: some problem !

Long Horizon m = 1 year m = 2 years m = 3 years

h = 4 years -1.8078 (0.2981) -0.8380 (0.2889) -0.0421 (0.2682)

2-Factor VAR(1) -0.8569 (0.3536) -0.0085 (0.3414) 0.8626 (0.3514)

2-Factor VAR(2) -1.4088 (0.4084) -0.2338 (0.3864) 0.9368 (0.3843)

h = 5 years -1.7470 (0.3291) -0.9720 (0.3199) -0.2378 (0.3283)

2-Factor VAR(1) -1.1444 (0.4102) -0.0033 (0.3953) 1.1279 (0.3970)

2-Factor VAR(2) -1.6686 (0.4635) -0.2112 (0.4373) 1.2060 (0.4267)
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� Which ”directions” should we follow to improve the empirical performances of a

given model ?

i) Adding new factors (latent and/or observable) or sources of non-linearities

(stochastic volatility, jumps, switching of regimes) able to explain the strong

persistence in yields [see Dai, Singleton and Yang (2007, RFS), Monfort and

Pegoraro (2007, JFEC) and Gourieroux, Monfort, Pegoraro and Renne (2012)].

ii) Estimating model parameters in a way coherent with interest rates persistence

[see Jardet, Monfort and Pegoraro (2012, JBF)].
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5.2 Alternative Estimation Procedures for Gaussian ATSMs

5.2.1 MLE through the ”Inversion Procedure”

� Let us consider a Gaussian VAR(1) Factor-Based term structure model in which

the latent factor (xt) is K-dimensional. Let us consider, at date t, K yields

(among the M in the data base) that we organize in the vector RK
t = [R(t, t +

h1), . . . , R(t, t+ hK)]′.
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� Now, the affine relation between this vector of yields and the factor xt can be

written in the following way:

RK
t = CK xt +DK , CK = CK(θ) , DK = DK(θ) , θ = (θP, θQ)

where CK =


−
c1,h1

h1
. . . −

cK,h1

h1... . . . ...

−
c1,hK

hK
. . . −

cK,hK
hK

 , and DK =


−
dh1

h1...

−
dhK
hK



37



� it is a linear system of K equations in K unknowns (the scalar variables in xt).

� Given the observed yields RK(t), we can easily solve for xt and write:

xt = C−1
K [RK

t −DK] .

� Given that the conditional p.d.f. f(xt+1 |xt) is known (it is the p.d.f. of K-

dimensional conditional Gaussian process with conditional mean Et[xt+1] = ν +

Φxt and conditional variance Vt[xt+1] = Ω), we have that (exercise):

f(RK
t+1 |RK

t ) =
1

det(CK)
f(xt+1 |xt) .
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� Given the set of observations at times {1, . . . , T}, the log-Likelihood function is

given by:

L(θ) =
T∑
t=1

log f(RK
t |RK

t−1) ,

assuming f(RK
1 |RK

0 ) = f(RK
0 ) , i.e., the marginal density .

� The Maximum Likelihood Estimator (MLE) is : θML = ArgMaxθ L(θ) [Pearson

and Sun (1994)].

� Here we have assumed that K yields are observed without errors → in reality

they are reconstructed by interpolation/fitting techniques.

� Moreover, we have to decide, in our data base, which yields (residual maturi-

ties) are observed without errors.
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� In small sample (quarterly observations), different results (estimates) are ob-

tained when different maturities are used.

� Chen and Scott (1993) tackle this problem assuming that additional yields are

observed with errors.

� Let us assume that M − K additional yields are measured with errors, besides

the K observed without errors:

RM−K
t = CM−K xt +DM−K + ηt ,

RM−K
t = [R(t, t+ hK+1), . . . , R(t, t+ hM)]′ ,

where the conditional distribution of the measurement errors (ηt) is known and

given by h(ηt | ηt−1). Moreover, ηt⊥RM−K
t , ηt⊥RK

t .
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� Then, it is possible to prove that (exercise) the Log-Likelihood function is given

by:

L∗(θ) = L(θ) +
T∑
t=1

logh(ηt | ηt−1) ,

assuming h(η1 | η0) = h(η1) , i.e., the marginal density .

� The Maximum Likelihood Estimator (MLE) is : θML = ArgMaxθ L∗(θ) [Chen

and Scott (1993)].

� We can not apply the two above mentioned estimation procedures if p > 1,

given that the inversion of the yield-to-maturity formula (using observed yields)

provides at two subsequent dates two different values for the same scalar factor.
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5.2.2 MLE through Kalman Filter recursions

� If we assume that all yields are observed with errors, the Gaussian VAR(1)-based

ATSM can be written in a State Space form:

RM
t = CM(θ)xt +DM(θ) + ηt , ηt ∼ IIN(0, Q) , (Measurement Equation) ,

xt = ν + Φxt−1 + εt , εt ∼ IIN(0, R) , (Transition Equation) ,

ηt⊥ εt .

� RM
t is the (M × 1) vector of observed variables (observed yields);

� xt is the (K × 1) vector of unobserved factors (latent factors).

� Unknown vector of parameters we have to estimate is θ = (θP, θQ)′.
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� Statistical Inference:

– estimate θ by MLE;

– estimate the unobserved latent factors xt (filtering);

� The Kalman Filter (KF) is a recursive algorithm consisting of a prediction

and update step.

� It is a Linear Gaussian State Space Model and, thus, parameters can be efficiently

estimated by Maximum Likelihood with the (exact !) Likelihood function cal-

culated by the Kalman Filter. KF is optimal in MSE sense.

� Notation: RM
t = (RM

t , R
M
t−1, . . . , R

M
1 ) (date-t information set);
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� Some definitions:

– Let xt|t−1 := E
[
xt |RM

t−1

]
= ν + Φxt−1|t−1 be the best linear predictor of xt

given the history of observable until t− 1;

– Let RM
t|t−1 := E

[
RM
t |RM

t−1

]
= CM xt|t−1 +DM be the best linear predictor of RM

t

given RM
t−1;

– Let xt|t := E
[
xt |RM

t

]
be the best linear predictor of xt given the history of

observable until t;
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� What is the purpose of the Kalman Filter ?

– Let us assume we have xt|t−1 and RM
t|t−1.

– We observe a new RM
t .

– We need to obtain xt|t.

– Note that xt+1|t = ν + Φxt|t and RM
t+1|t = CM xt+1|t + DM , so we can go back

to the first step and wait for RM
t+1.

– So, the key question is how to obtain xt|t from xt|t−1 and RM
t .
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� Let us assume we adopt the following equation to get xt|t from xt|t−1 and RM
t :

xt|t = xt|t−1 +Kt (RM
t −RM

t|t−1) = xt|t−1 +Kt (RM
t − CM xt|t−1 −DM) ,

� This is formula has a probabilistic justification (to follow)

� What is Kt ? It is the Kalman filter gain and it measures how much we update

xt|t−1 as a function of the error we make in predicting RM
t .

� How do we find optimal Kt ? The KF is about how to build Kt such that we

optimally update xt|t from xt|t−1 and RM
t .
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� Some additional definitions:

– Let Σt|t−1 := E
[
(xt − xt|t−1) (xt − xt|t−1)′ |RM

t−1

]
be the predicting error variance-

covariance matrix of xt given the history of observable until t− 1.

– Let Ωt|t−1 := E
[
(RM

t −RM
t|t−1) (RM

t −RM
t|t−1)′ |RM

t−1

]
be the predicting error vari-

ance covariance matrix of RM
t given the history of observable until t− 1.

– Let Σt|t := E
[
(xt − xt|t) (xt − xt|t)′ |RM

t

]
be the predicting error variance co-

variance matrix of xt given the history of observable until t.
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� Finding the optimal Kt:

– We search for Kt such that → Min Σt|t.

– It can be shown that, if it is the case:

Kt = Σt|t−1 CM
(
C′MΣt|t−1CM +Q

)−1
,

– we will provide some intuition later.

� Given Σt|t−1, RM
t and xt|t−1, we can now set the Kalman Filter algorithm.
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� Given Σt|t−1:

Ωt|t−1 = C′M Σt|t−1 CM +Q

and

E
[
(RM

t −RM
t|t−1) (xt − xt|t−1)′ |RM

t−1

]
= C′M Σt|t−1

� Given Σt|t−1, we can also compute:

Kt = Σt|t−1 CM
(
C′MΣt|t−1CM +Q

)−1
= Σt|t−1 CM Ω−1

t|t−1

� Given xt|t−1:

RM
t|t−1 = CM xt|t−1 +DM
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� Once we have Σt|t−1, RM
t , xt|t−1 and Kt, we compute:

xt|t = xt|t−1 +Kt (RM
t −RM

t|t−1) = xt|t−1 +Kt (RM
t − CM xt|t−1 −DM) ,

� and

Σt|t = E
[
(xt − xt|t) (xt − xt|t)′ |RM

t

]
= Σt|t−1 −Kt CM Σt|t−1

where we exploit the fact that xt − xt|t = xt − xt|t−1 −Kt (RM
t − CM xt|t−1 −DM).

� Given Σt|t, we compute:

Σt+1|t = Φ Σt|t Φ′ +R
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� Given xt|t, we can compute:

xt+1|t = Φxt|t ,

RM
t+1|t = CM xt+1|t +DM

� Therefore, from xt|t−1, Σt|t−1 and RM
t we compute xt|t and Σt|t.

� We also compute RM
t|t−1 and Ωt|t−1. Why ?

• To calculate the likelihood function of RM
T = (RM

T , R
M
T−1, . . . , R

M
1 ) (to follow).

• This estimation methodology is adapted also to the case p > 1 (companion

form).
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� The Kalman Filter Algorithm: A Review

• We start with xt|t−1, Σt|t−1 and we observe RM
t . Then:

Ωt|t−1 = C′M Σt|t−1 CM +Q

RM
t|t−1 = CM xt|t−1 +DM .

• Filtering Step:

Kt = Σt|t−1 CM
(
C′MΣt|t−1CM +Q

)−1
= Σt|t−1 CM Ω−1

t|t−1

Σt|t = Σt|t−1 −Kt CM Σt|t−1

xt|t = xt|t−1 +Kt (RM
t − CM xt|t−1 −DM) ,

• Prediction Step:

xt+1|t = ν + Φxt|t ,

Σt+1|t = Φ Σt|t Φ′ +R .
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� Some intuition about the optimal Kt = Σt|t−1 CM
(
C′MΣt|t−1CM +Q

)−1

• As we have seen before, we can write Kt = Σt|t−1 CM Ω−1
t|t−1

• If we have made a big mistake in forecasting xt|t−1 using the past information

(i.e. Σt|t−1 large) we give a lot of weight to the new information (Kt large).

• If the new information is noise (Q large) we give a lot of weight to the old

prediction (Kt small).
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� An important step in the Kalman filter is to set the initial conditions

� Initial conditions:

1. x1|0

2. Σ1|0

� How do we fix them ? Since we consider only stable system (stationary VAR

dynamics) the standard approach is to set x1|0 = E(xt) (marginal mean) and

Σ1|0 = V (xt) (marginal variance).
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� Writing the Log-Likelihood Function

• We want to write (to calculate) the likelihood function of RM
T = (RM

T , R
M
T−1, . . . , R

M
1 ):

L(θ) = ln f(RM
T , R

M
T−1, . . . , R

M
1 | θ) =

T∑
t=1

ln f(RM
t |RM

t−1; θ)

= −
T∑
t=1

[
N

2
ln 2π +

1

2
ln |Ωt|t−1|+

1

2

T∑
t=1

υt Ω−1
t|t−1 υt

]

• where:

υt = RM
t −RM

t|t−1 = RM
t − CM xt|t−1 −DM

Ωt|t−1 = C′M Σt|t−1 CM +Q .

• Remember: KF calculates L(θ) while its maximization is obtained through a

numerical algorithm (BFGS, BHHH, ...) and provides the MLE θ̂T .
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5.2.3 The Adrian, Crump and Moench (2012, JFE) Approach

� A Gaussian ATSM with VAR(1) K-dimensional factor xt:

xt+1 = ν + Φxt + Σεt+1 ,

• and with exponential-affine SDF (Γt = γo + γ xt):

Mt,t+1 = exp

[
−rt + Γ′tεt+1 −

1

2
Γ′tΓt

]
,

• has a one-period geometric bond return following:

ρ(t+ 1, T ) = rt − 1
2
ω(t+ 1, T )′ω(t+ 1, T ) + ω(t+ 1, T )′Γt − ω(t+ 1, T )′ εt+1 ,

where ω(t+ 1, T ) = −(Σ′CT−t−1) is an K-dimensional vector.
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� Adrian, Crump and Moench (2012) exploit the fact that the one-period excess

bond return:

rx(h−1)
t+1 := logB(t+ 1, t+ h)− logB(t, t+ h)− rt

• is conditionally Gaussian and linear in (γo, γ)

• in order to make their estimation computationally fast, even for a large number

of factors.

• Let us present their approach in the following slides.
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� The Adrian, Crump and Moench (2012) approach:

• Given the VAR(1) factor xt, the SDF Mt,t+1 = exp
[
−rt − Γ′tεt+1 − 1

2
Γ′tΓt

]
and the

excess bond return rx(h−1)
t+1 , from B(t, t+ h) = Et[Mt,t+1B(t+ 1, t+ h)] we find:

1 = Et

[
exp

(
rx(h−1)

t+1 −
1

2
Γ′tΓt − Γ′tεt

)]

• Under the assumption that {rx(h−1)
t+1 , εt+1} are jointly normally distributed:

Et

[
rx(h−1)

t+1

]
= Covt

(
rx(h−1)

t+1 , ε′t+1Γt

)
−

1

2
V art

(
rx(h−1)

t+1

)
= Covt

(
rx(h−1)

t+1 , ε′t+1

)
(γo + γ xt)−

1

2
V art

(
rx(h−1)

t+1

)
= β(h−1)

t
′ (γo + γ xt)−

1

2
V art

(
rx(h−1)

t+1

)
,

where β(h−1)
t

′ := Covt

(
rx(h−1)

t+1 , ε′t+1

)
.
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• Now, we can always decompose rx(h−1)
t+1 into an expected component and an

unexpected one:

rx(h−1)
t+1 = Et

[
rx(h−1)

t+1

]
+
(
rx(h−1)

t+1 − Et
[
rx(h−1)

t+1

])
• and the latter can be further decomposed into a component conditionally corre-

lated with εt+1 and another that is conditionally orthogonal to εt+1:

rx(h−1)
t+1 − Et

[
rx(h−1)

t+1

]
= β(h−1)

t
′εt+1 + e(h−1)

t+1

where the return pricing errors e(h−1)
t+1 are conditionally i.i.d. with variance σ2.

• Given that V art
(
rx(h−1)

t+1

)
= β(h−1)

t
′β(h−1)
t + σ2 can thus write:

rx(h−1)
t+1 = β(h−1)

t
′ (γo + γ xt)−

1

2

(
β(h−1)
t

′β(h−1)
t + σ2

)
+ β(h−1)

t
′εt+1 + e(h−1)

t+1
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• In their baseline model they assume xt is observable and made of a linear combi-

nation of yields, such as principal components. They estimate model parameters

using holding period returns based on the same set of yields. Per construction,

this implies βt = β.

• Stacking the system across h ∈ {2, . . . , H} maturities and t ∈ {1, . . . , T − 1} time

periods, we rewrite it as:

rx = β′ (γo 1′T−1 + γ X−)−
1

2

(
B∗vec(IK) + σ2 1H−1

)
1′T−1 + β′E + E

• where rx is a (H − 1, T − 1) matrix of excess returns,

β =
[
β(2) |β(3) | . . . |β(H)

]
is a (K,H − 1) matrix of factor loadings
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• 1` is an `-dimensional vector of ones;

• X− = [X1, . . . , XT−1] is a (K,T − 1) matrix of lagged pricing factors;

• B∗ =
[
vec(β(2)β(2)′) | vec(β(3)β(3)′) | . . . | vec(β(H)β(H)′)

]′
is a (H − 1,K2) matrix;

• E is a (K,T − 1) matrix of normalized residuals {ε̂t},

and E is a (H − 1, T − 1) matrix of {ê(h)
t } residuals.
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� Estimation Procedure:

1st) We estimate θP = (ν,Φ,Σ) by OLS, and then we build E from {ε̂t}

2nd) Run the following regression:

rx = a 1′T−1 + β′E + cX− + E

a = β′γo −
1

2

(
B∗vec(IK) + σ2 1H−1

)
c = β′γ

in order to obtain:

[
â | β̂′ | ĉ

]
= rx Z̃ ′(Z̃ Z̃ ′)−1 where Z̃ =

[
1T−1 | Ê ′ |X ′−

]′
,

we collect the associated residuals in Ê, in order to calculate σ̂2 = Tr(Ê Ê′)/(H−

1)(T − 1), and we calculate B̂∗ from β̂′.
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3rd) Given the previously estimated parameters, we easily find:

γ̂ =
(
β̂β̂′
)−1

β̂ ĉ

and from β̂′γo = â +
1

2

(
B̂∗vec(IK) + σ̂2 1H−1

)
we retrieve:

γ̂o =
(
β̂β̂′
)−1

β̂

[
â +

1

2

(
B̂∗vec(IK) + σ̂2 1H−1

)]
.

• From the estimated model parameters, we can generate e zero-coupon yield

curve using the recursive equations (Ch, Dh) and an identification between β(h)

and Ch is easily found (exercise).

• Possible generalization to p > 1.
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5.3 Ang and Piazzesi (2003, JME)

5.3.1 Purpose of the paper

� The authors describe the (particular!) joint dynamics of bond yields and macroe-

conomic variables in a discrete-time Gaussian Vector Autoregression setting,

where ”causality” and no-arbitrage restrictions are imposed in order to guaran-

tee the theoretical and empirical tractability of the model.

� Using an affine discrete-time term structure model with inflation and economic

growth factors, along with latent variables, they investigate how macro variables

affect bond prices and the dynamics of the yield curve.
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5.3.2 Main results

� They find that:

– the forecasting performance of a Gaussian VAR improves when no-arbitrage

restrictions are imposed

– and that (no-arbitrage) models with macro factors forecast better than

models with only unobservable factors.

� Variance decompositions show that macro factors explain up to 85% of the

variation in bond yields (over short and middle maturities).
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� Macro factors primarily explain movements at the short end and middle of

the yield curve.

� Unobservable factors still account for most of the movement at the long end

of the yield curve.

� They observe (monthly) yields of 1, 3, 12, 36 and 60 months to maturity (1, 12

and 60 observed without errors) from 1952:06 to 2000:12.

� Macro-variables are observed from 1952:01 to 2000:12. These variables are

divided in two groups.
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� The first group consists of various inflation measures which are based on the

CPI (consumer price index), the PPI (producer price index) of finished goods,

and spot market commodity prices (PCOM).

� The second group contains variables that capture real activity: the index of Help

Wanted Advertising in Newspapers (HELP ), unemployment (UE), the growth

rate of employment (EMPLOY ) and the growth rate of industrial production

(IP ).
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� This list of variables includes most variables that have been used in monthly

VARs in the macro literature. Among these variables, PCOM and HELP are

traditionally thought of as leading indicators of inflation and real activity, respec-

tively.

� All growth rates (including inflation) are measured as the difference in logs of

the index at time t and (t− 12); t in months.
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5.3.3 Setup

Historical Factor Dynamics

� The multivariate FACTOR (the information used by the investor to price bonds)

is denoted:

Xt = (Xo
t
′, Xu

t
′)′ , where

Xo
t
′ = (fot

′, fot−1
′, . . . , fot−p+1

′)′ , the MACRO factors ,

Xu
t
′ = fut , the LATENT factors .

� fot denotes a bivariate process of macro factors following a Gaussian VAR(p)

process with p = 12 (monthly observations):

fot = ρ1fot−1 + . . .+ ρ12fot−12 + Ωuot , u
o
t ∼ IIN(0, I) ,

Ω = (2× 2) lower triangular , (ρ1, . . . , ρ12) (2× 2) full AR matrices .
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� fut denotes a trivariate process of latent factors following a Gaussian VAR(1)

process:

fut = ρfut−1 + uut , u
u
t ∼ IIN(0, I) ,

ρ is (3× 3) lower triangular AR matrix .

� uut⊥uot

� If we define Ft = (fot
′, fut

′)′ (5-dimensional vector) we can represent the joint

dynamics of the macro and latent factors in the following way:

Ft = Φ1Ft−1 + . . .+ Φ12Ft−12 + θut , ut = (uot
′, uut

′)′ ∼ IIN(0, I) ,

the coefficients of (Φ2, . . . ,Φ12) corresponding to fut

are set equal to zero. More precisely →
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� The AR matrices are specified in the following way:

Φ1 =

[
Φo

1,11 02×3

03×2 Φu
1,22

]
, Φj =

[
Φo
j,11 02×3

03×2 02×3

]
, ∀j ∈ {2, . . . ,12} .

� We observe that ALL autoregressive matrices are block-diagonal. The authors

assume “lagged independence” between macro and latent factors : fot does not

Granger-cause fut (and vice versa).

� Lower-right corners of Φj, ∀j ∈ {2, . . . ,12}, are equal to zero (Φu
j,22 = 0) →

because of the assumption fut ∼ V AR(1).
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� the matrix θ is such that:

θ =

[
θo1 02×3

03×2 θu2

]
, where θo1 = I3×3 , θ

u
1 = Ω lower triangular .

� The (historical) dynamics of Xt = (Xo
t
′, Xu

t
′)′ is:

Xt = µ+ ΦXt−1 + Σεt , εt = (uot
′,0, . . . ,0, uut

′)′ .
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� What fot = (fo,1t , fo,2t )′ is ?

•

fo,1t = 1st Principal Component (71% of explained variance) extracted

from an “inflation group” variables, with “inflation group” variables

= CPI inflation, PCOM (spot mkt commodity price inflation, PPI inflation.)

•

fo,2t = 1st Principal Component (52% of explained variance) extracted

from a “real activity group” variables, with “real activity group” variables

= HELP, Unemployment, employment growth rate, industrial prod

growth rate.)
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� What fut = (fu,1t , fu,2t , fu,3t )′ is ?

• Extracted from 3 yields assumed to be perfectly observed (inverting the affine

yield-to-maturity formula): R(t, t+ 1), R(t, t+ 12) and R(t, t+ 60).

• They (classically → Litterman and Scheinkman (1991)) act as a:

– LEVEL FACTOR = fu,1t → correlation of 0.92 with [R(t, t+1)+R(t, t+12)+

R(t, t+ 60)]/3 (called ”level transformation”);

– SLOPE FACTOR = fu,2t → correlation of 0.58 with [R(t, t+60)−R(t, t+1)];

– CURVATURE FACTOR = fu,3t → correlation of 0.77 with [R(t, t+1)−2R(t, t+

12) +R(t, t+ 60)].
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Short Rate Historical Dynamics

� The authors assume that:

rt = δ0 + δ′11X
o
t + δ′12X

u
t = δ0 + δ′1Xt , with Xo

t⊥Xu
t .

� If δ1 is constrained to depend on just contemporaneous values, then we have the

classical Taylor rule given that vt = δ′12X
u
t can be interpreted as an “orthogonal

(monetary policy) shock”. It is named “Macro Model”.

� If δ1 is unconstrained: introducing lagged values, they hope to catch relevant

information to forecast inflation or output. They interpret that specification as

a forward-looking version of the Taylor rule (“Macro Lag Model”).
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No-Arbitrage, Stochastic Discount Factors and Pricing Formulas

� To develop the affine term structure model, they use the assumption of no-

arbitrage (Harrison and Kreps, 1979) to guarantee the existence of a (positive

and not unique in general) Stochastic Discount Factor Mt,t+1 (or pricing kernel)

such that the price of any asset Vt that does not pay any dividend at t + 1

satisfies:

Vt = EP
t [Mt,t+1Vt+1] .

� If we consider at t a zero-coupon bond maturing at t+ 1 we have:

B(t, t+ 1) = EP
t [Mt,t+1] = exp(−rt) .
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� More generally, for any payoff Vt+h at t+ h, we have :

Vt = EP
t [Mt,t+hVt+h] ,

= EP
t [Mt,t+1 . . .Mt+h−1,t+hVt+h] .

� Now, it is well known from asset pricing theory that, under the absence of

arbitrage opportunity, there exist equivalent (to P) probability measures under

which asset prices, evaluated with respect to some numeraire Nt, are martingales.

� A numeraire is defined as a non-dividend-paying price process N = (Nt, t ≥ 0)

with N0 = 1. In other words, N is a stochastic process such that, for every T > t:

Nt = EP
t [Mt,TNT ] , and EP

0[M0,TNT ] = 1 , where

Mt,T = Mt,t+1 · . . . ·MT−1,T .
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� The process N∗ = (NtM0,t, t ≥ 0) is therefore a P-martingale with unitary value

in t = 0, and if Q is the probability (equivalent to P) defined by the sequence of

conditional densities:

dQt,t+1

dPt,t+1
=
Nt+1Mt,t+1

Nt
> 0 , EP

t

[
dQt,t+1

dPt,t+1

]
= 1

then, a price process Vt is such that Vt/Nt is a Q-martingale:

Vt = EP
t [Mt,t+1Vt+1]⇐⇒

Nt

Nt
Vt = EP

t

[
Nt+1

Nt+1
Mt,t+1Vt+1

]

� thus:

Vt

Nt
= EP

t

[
Nt+1Mt,t+1

Nt

Vt+1

Nt+1

]
= EQ

t

[
Vt+1

Nt+1

]
.
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� If we consider as numeraire the money-market account Nt = exp(r0 + . . . +

rt−1) = (A0,t)−1, where A0,t = E0(M0,1) · · ·Et−1(Mt−1,t), the associated equivalent

probability Qt,t+1 has a one-period conditional density, with respect to Pt,t+1,

given by :

dQt,t+1

dPt,t+1
=
A0,tMt,t+1

A0,t+1
=

Mt,t+1

Et(Mt,t+1)
.

and it is called Risk-Neutral probability measure.

� This means that the pricing formula Vt = EP
t [Mt,t+1Vt+1] can be written:

Vt = EP
t

[
Mt,t+1

EP
t [Mt,t+1]

EP
t [Mt,t+1]Vt+1

]
= EQ

t [exp(−rt)Vt+1] ,

where rt is the (t, t+ 1) short rate, known in t
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� In a general (T − t)-period horizon, the conditional (to It) density of the risk-

neutral probability Qt,T with respect to the historical probability Pt,T is given by:

dQt,T

dPt,T
=

Mt,t+1 · . . . ·MT−1,T

Et(Mt,t+1) · . . . · ET−1(MT−1,T)
,

� More generally, for any payoff Vt+h at t+ h, we have :

Vt = EQ
t [exp(−rt − . . .− rt+h−1)Vt+h] ,

� In the case of a ZCB maturing at t+ h we have:

B(t, t+ h) = EP
t [Mt,t+h] = EP

t [Mt,t+1B(t+ 1, t+ h)]

= EQ
t [exp(−rt − . . .− rt+h−1)] = EQ

t [exp(−rt)B(t+ 1, t+ h)] ,
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The Exponential-Affine Stochastic Discount Factor and the Yield Curve

� The authors assume the following exponential-affine (in Xt) Stochastic Discount

Factor:

Mt,t+1 = exp

[
−rt − λ′tεt+1 −

1

2
λ′tλt

]
= exp

[
−δ0 − δ′1Xt − λ′tεt+1 −

1

2
λ′tλt

]
,

where λt = λ0 + λ1Xt .

� From B(t, t+ h) = EP
t [Mt,t+1B(t+ 1, t+ h)] we obtain:

B(t, t+ h) = exp
[
Ah +B′hXt

]
, where Ah and Bh are:

Ah+1 = Ah +B′h(µ−Σλ0) +
1

2
B′hΣΣ′Bh − δ0 , where A1 = −δ0

B′h+1 = B′h(Φ−Σλ1)− δ1 , where B1 = −δ1
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� The yield-to-maturity formula (the affine yield curve) is therefore:

R(t, t+ h) = −
1

h
ln[B(t, t+ h)] = −

Ah

h
−
B′hXt

h
,

� Parameters in λ0 and λ1 associated to lagged macro-variables are set equal to

zero. This means that, they consider:

λt = λ0 + λ1[fot
′, fut

′]′ .

� In addition, they assume the (5× 5) matrix λ1 block-diagonal.
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5.3.4 Estimation Procedure

� They estimate three type of models : a) Xt = fut (only latent variables); b)

”Macro Model” (no lags); c) ”Macro Lag Model”;

� They follow a two-step consistent estimation procedure, which is adapted to

forecast with models characterized by several parameters.

� They first estimate by OLS the parameters in the VAR(12) dynamics of fot ,

and the parameters (δ0, δ11) in the short rate dynamics (exploiting the fact that

Xu
t ⊥Xo

t ).
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� Then, keeping fixed that parameters to the estimated values, they estimate the

remaining parameters, namely (λ0, λ1, δ12), using the Chen-Scott (1993) inversion

procedure.

� Let us take a look now to what happens to yield curve factor loadings associated

to latent and macro variables.

� In other words: do the three latent factors keep their role of level, slope and

curvature ? How macro variables affect the yield curve shape ?
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� We observe that, in the ”Macro Model”, the three latent factors keep their role

of LEVEL, SLOPE and (almost) CURVATURE.

� Inflation and Real Activity factors (at date t) affect yields (at date t) almost

uniformly over the maturity spectrum.

� What about the ”Macro Lag Model” ?
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� Now, in the ”Macro Lag Model”, Inflation and Real Activity (contemporaneous)

factors have little impact on the yield curve for h > 30 months.

� Thus, ”Macro Model” and ”Macro Lag Model” imply different impact of macro

factors on the yield curve.

� The Forward Looking Taylor Rule (with lags) rt = δ0 + δ′1Xt show that lags are

important in determining yield variations

→ Contemporaneous shocks have less of an impact on the yields.
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� Question 1 : are no-arbitrage restrictions and/or macro variables useful for

yields out-of-sample forecasts ?

� Question 2 : Are the three latent factors (level, slope, curvature) explained/linked

to the macro variables (inflation and economic activity) ?
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5.3.5 Results

� Imposing no-arbitrage restrictions improves yields out-of-sample forecasts w.r.t.

a VAR (”Yield only No-arbitrage ATSM” dominates ”Yield only VAR model”).

� These forecasts can be further improved incorporating macro factors into the

Yield only No-arbitrage ATSM (”Macro Model” dominates ”Macro Lag Model”).
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� They find that macro factors explain a significant portion (up to 85%) of move-

ments in the short and middle parts of the yield curve, but explain only around

40% of movements at the long end of the yield curve.

� The effects of inflation shocks are strongest at the short end of the yield curve.

� A significant proportion of the ”level” and ”slope” factors are attributed to

macro factors, particularly to inflation. However, the level effect qualitatively

survives largely intact when macro factors are added to a term structure model.
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5.4 The Autoregressive Gamma of order p Process

5.4.1 The Non-centered Gamma Distribution

� We say that the positive random variable Y is Gamma with parameters ν > 0

and µ > 0, i.e. Y ∼ γ(ν, µ), if and only if its probability density function is:

fY (y ; ν, µ) =
exp(−y/µ) yν−1

Γ(ν)µν
I{y>0} ,

where Γ(x) =

∫ +∞

0
tx−1e−tdt , x ∈ C , Re(x) > 0 ,

Γ(x) = Γ(x− 1) (x− 1) ; Γ(x) = (x− 1)! if x is a positive integer .

� ν is the shape (or degree of freedom) parameter, µ is the scale parameter.
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� We have that:

• E[Y ] = ν µ and V [Y ] = ν µ2 (mean and variance);

• E[exp(uY )] =

(
1

1− uµ

)ν
, for u < 1/µ (Laplace transform);

• Y ∼ γ(ν, µ) ⇐⇒
Y

µ
∼ γ(ν,1) (scaling).

� We say that the positive random variable Y is Non-centered Gamma with

parameters ν > 0, β > 0 and µ > 0, i.e. Y ∼ γ̃(ν, β, µ), if and only if there exists

a random variable Z ∼ P(β) such that:
Y

µ
|Z ∼ γ(ν + Z,1) , ν > 0 ,

Z ∼ P(β) , β > 0 , µ > 0 ,

⇐⇒

 Y |Z ∼ γ(ν + Z, µ) , ν > 0 ,

Z ∼ P(β) , β > 0 , µ > 0 ,

where β is the non-centrality parameter.
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� Let us remember that a discrete non-negative random variable Z is Poisson with

parameter θ > 0, i.e. Z ∼ P(θ) (θ > 0), if and only if:

P[Z = z] =
exp(−β)βz

z!
, z ∈ {0,1,2, . . .} ,

E[Z] = V [Z] = β ,

E[exp(uZ)] = exp[β (eu − 1)] .

� The p.d.f. of Y ∼ γ̃(ν, β, µ) is given by:

fY (y ; ν, β, µ) =
+∞∑
z=0

fY (y |Z = z ; ν, µ) × fZ(z ; β)

=
+∞∑
z=0

[
exp(−y/µ) yν+z−1

Γ(ν + z)µν+z
×

exp(−β)βz

z !

]
I{y>0} .
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� We have that:

• E[Y ] = ν µ+ β µ and V [Y ] = ν µ2 + 2µ2β (mean and variance);

• E[exp(uY )] = exp

[
−ν log(1− uµ) + β

uµ

1− uµ

]
, for u < 1/µ

(Laplace transform);

• exercise!
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5.4.2 The Autoregressive Gamma of order 1 Process

� The Autoregressive Gamma of order one [ARG(1)] process {xt} (say) is the exact

discrete-time equivalent of the square-root process introduce in the continuous-

time term structure literature by Cox, Ingersoll and Ross (1985). This (positive

valued) process can be defined as:

xt+1

µ
|zt+1 ∼ γ(ν + zt+1,1) , ν > 0 ,

zt+1|xt ∼ P(ρxt/µ) , ρ > 0 , µ > 0 , ρ = β µ

(3)

� where γ(.) denotes the Gamma distribution, µ is the scale parameter, ν is the

degree of freedom, ρ is the correlation (AR) parameter, and zt is the mixing

variable.
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� This means that the conditional probability density function f(xt+1 |xt;µ, ν, ρ)

(say) of the ARG(1) process is the following mixture of Gamma densities with

Poisson weights:

f(xt+1 |xt;µ, ν, ρ) =
+∞∑
k=0


1

µ

e
−
xt+1

µ
(
xt+1

µ

)ν+k−1

Γ(ν + k)
×

(
ρxt

µ

)k
k!

e
−
ρxt

µ

 I{xt+1>0} ,

where ρ > 0 , µ > 0 , ν > 0 ,
(4)

� Its conditional Laplace transform has the following exponential-affine (in xt) form

[see Gourieroux and Jasiak (2006) for details; exercise!]:

E
[
exp(uxt+1) |xt

]
= exp

[
ρu

1− uµ
xt − ν log(1− uµ)

]
. (5)
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� The conditional mean and variance are respectively given by

• E(xt+1 |xt) = νµ+ ρxt,

• and V (xt+1 |xt) = νµ2 + 2µρxt.

• exercise!

� Consequently, the process {xt} has the following weak AR(1) representation:

xt+1 = νµ+ ρxt + εt+1 , (6)

� where {εt} is a conditionally heteroskedastic martingale difference

(⇒ E(εt+1 | εt) = 0), whose conditional variance is V (εt+1 | εt) = νµ2 + 2µρxt

(exercise!).
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� The process is stationary (of second order) if and only if ρ < 1.

� In this case, the process {εt} has finite unconditional variance given by:

V (εt) = νµ2 + 2νµ2 ρ

1− ρ
(exercise!).

� The unconditional mean and variance of {xt} are respectively given by:

• E(xt) =
νµ

1− ρ
,

• and V (xt) =
νµ2

(1− ρ)2
.

• exercise!
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5.4.3 The Autoregressive Gamma of order p Process

� The Autoregressive Gamma of order p [ARG(p)] process can be defined as:

xt+1

µ
|zt+1 ∼ γ(ν + zt+1,1) , ν > 0 ,

zt+1|xt ∼ P
(
ρ1xt + . . .+ ρpxt−p+1

µ

)
, ρi = βi µ , i ∈ {1, . . . , p} .

(7)

� With the notation Xt = (xt, . . . , xt−p+1)′ and ρ = (ρ1, . . . , ρp)′ we have that the

conditional Laplace transform of the ARG(p) process is (exercise!):

E
[
exp(uxt+1) |xt

]
= exp

[
u

1− uµ
ρ′Xt − ν log(1− uµ)

]
, (8)
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� and the p.d.f. f(xt+1 |Xt;µ, ν, ρ) (say) is given by:

f(xt+1 |Xt;µ, ν, ρ) =
+∞∑
k=0


1

µ

e
−
xt+1

µ
(
xt+1

µ

)ν+k−1

Γ(ν + k)
×

(
ρ′Xt

µ

)k
k!

e
−
ρ′Xt

µ

 I{xt+1>0} .

(9)

� It easily seen that the conditional mean and variance of xt+1, given xt, are

respectively given by

• E(xt+1 |xt) = νµ+ ρ′Xt

• and V (xt+1 |xt) = νµ2 + 2µρ′Xt.

• exercise!
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� This means that, the ARG(p) process {xt} has the weak AR(p) representation:

xt+1 = νµ+ ρ′Xt + ξt+1 , (10)

where {ξt} is a conditionally heteroskedastic martingale difference, whose condi-

tional variance is V (ξt+1 | ξt) = νµ2 + 2µρ′Xt (exercise!).

� The process {xt} is stationary if and only if ρ′e < 1 [where e = (1, . . . ,1) ∈ Rp].

� In this case, {ξt} has finite unconditional variance given by:

V (ξt) = νµ2 + 2νµ2 ρ′e

1− ρ′e
(exercise!).

� The unconditional mean of {xt} is given by E(xt) =
νµ

1− ρ′e
(exercise!).
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5.5 Univariate ARG(1) Factor-Based Term Structure Models

5.5.1 The Historical Dynamics

� We consider our discrete-time economy between dates 0 and T .

� xt is our factor or a state vector, and it may be observable, partially observable

or unobservable by the econometrician.

� Gaussian VAR(p) ATSMs do not (theoretically) guarantee that the yield-to-

maturity formula generate positive yields for any date t, residual maturity h,

any parameter values and realization of the factor xt.
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� We are going to see now that, if assume that the factor xt follows an Autore-

gressive Gamma of order p Process (with a well specified SDF), then :

– the term structure of interest rates will be affine in the factor xt (or Xt if

p > 1).

– any model implied yield-to-maturity will be strictly positive.

� For ease of exposition (and for reason of time) we will consider only the case of

a scalar and latent factor.

� In this section we consider p = 1 and then, in the next one, we will assume p > 1.
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� Let us assume that the scalar latent factor xt has a dynamics, under the historical

probability P, described by an ARG(1) process.

� This means that, under P, the Laplace transform of xt+1, conditionally to xt, is

given by:

E
[
exp(uxt+1) |xt

]
= exp

[
ρu

1− uµ
xt − ν log(1− uµ)

]
,

= exp [a(u; ρ, µ)xt + b(u; ν, µ)] .

� We have seen in the previous sections that this process has the following weak

positive AR(1) representation:

xt+1 = νµ+ ρxt + εt+1 ,
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� where {εt} is a conditionally heteroskedastic martingale difference:

– ⇒ E(εt+1 | εt) = 0

– whose conditional variance is V (εt+1 | εt) = νµ2 + 2µρxt,

� and whose conditional Laplace transform is given by:

E
[
exp(uεt+1) | εt

]
= E

{
exp

[
u(xt+1 − νµ− ρ xt) |xt

]}
,

= exp [a(u; ρ, µ)xt + b(u; ν, µ)− u (ν µ+ ρ xt)] ,

= exp [(a(u; ρ, µ)− uρ)xt + b(u; ν, µ)− u ν µ] .

� This result is going to be useful in the construction of our one-period exponential-

affine SDF Mt,t+1.
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5.5.2 The Stochastic Discount Factor

� The one-period SDF Mt,t+1 is assumed to be given by:

Mt,t+1 = exp [−β − αxt + Γt εt+1]

× exp [−a (Γt; ρ, µ) xt − b (Γt; ν, µ) + Γt (ν µ+ ρ xt)]

� with stochastic risk-correction coefficient given by Γt = γo + γ xt.

� It is built in such a way that:

–
dQt,t+1

dPt,t+1
=

Mt,t+1

Et[Mt,t+1]
is a density :

Mt,t+1

Et[Mt,t+1]
> 0 and Et

[
Mt,t+1

Et[Mt,t+1]

]
= 1;

– the no-arbitrage restriction is explicitly satisfied : Et[Mt,t+1] = exp(− rt) if

and only if rt = β + αxt.
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� A useful Lemma - Let us consider the functions:

a(u; ρ, µ) =
ρu

1− uµ
and b(u; ν, µ) = −ν log(1− uµ) ;

then, we have:

� Lemma :
a(u+ g; ρ, µ)− a(g; ρ, µ) = a(u; ρ∗, µ∗)

b(u+ g; ν, µ)− b(g; ν, µ) = b(u; ν, µ∗)

with ρ∗ =
ρ

(1− gµ)2
, µ∗ =

µ

1− gµ
,

[Proof : exercise] and we will consider the case g = Γt.
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5.5.3 The Affine Positive Term Structure of Interest Rates

� The price at date t of the zero-coupon bond with time to maturity h is :

B(t, t+ h) = exp(chxt + dh) , h ≥ 1 ,

� where ch and dh satisfies, for h ≥ 1, the recursive equations:

ch = −α+ [a(ch−1 + Γt; ρ, µ)− a(Γt; ρ, µ)]

= −α+ a(ch−1; ρ∗, µ∗) ,

dh = −β + [b(ch−1 + Γt; ν, µ)− b(Γt; ν, µ)] + dh−1

= −β + b(ch−1; ν, µ∗) + dh−1 ,

� with initial conditions c0 = 0, d0 = 0 (or c1 = −α, d1 = −β). If xt = rt, then

c1 = −1 and d1 = 0.
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� The (continuously compounded) affine term structure of interest rates is:

R(t, t+ h) = −
1

h
logB(t, t+ h) = −

ch

h
xt −

dh

h
, h ≥ 1 ,

� positivity of the yields : Since rt = R(t, t + 1) = β + αxt, and since xt is a

positive process, the short rate process will be positive as soon as β and α are

nonnegative.

� The positivity of rt implies that of R(t, t+h), at any date t and time to maturity

h, because R(t, h) = −1
h

logEQ
t [exp(−rt − . . . −rt+h−1)].

� This is the discrete-time equivalent of the (continuous-time affine) Cox-Ingersoll-

Ross (1985) model.
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5.5.4 The Positive Risk-Neutral Dynamics

� The risk-neutral Laplace transform of xt+1, conditionally to xt, is given by:

EQ
t [exp(uxt+1)] = Et

[
Mt,t+1

Et(Mt,t+1)
exp(uxt+1)

]
= exp {[a(u+ Γt; ρ, µ)− a(Γt; ρ, µ)] xt + [b(u+ Γt; ν, µ)− b(Γt; ν, µ)]}

= exp [a(u; ρ∗, µ∗)xt + b(u; ν, µ∗)]

� Under the risk-neutral probability Q, xt+1 is a positive weak AR(1) process of the

following type:

xt+1 = ν µ∗ + ρ∗xt + ηt+1 ,

� with ρ∗ =
ρ

(1− Γt µ)2
> 0 and µ∗ =

µ

1− Γt µ
> 0, and where ηt+1 is such that

E(ηt+1 | ηt) = 0 and V (ηt+1 | ηt) = ν(µ∗)2 + 2µ∗ρ∗xt.
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5.6 Univariate ARG(p) Factor-Based Term Structure Models

5.6.1 The Historical Dynamics

� Let us assume that the scalar latent factor xt has a dynamics, under the historical

probability P, described by an ARG(p) process.

� This means that, under P, the Laplace transform of xt+1, conditionally to xt, is

given by:

E
[
exp(uxt+1) |xt

]
= exp

[
u

1− uµ
(ρ1 xt + . . .+ ρp xt−p+1)− ν log(1− uµ)

]
,

= exp

[
u

1− uµ
ρ′Xt − ν log(1− uµ)

]
,

= exp [a(u; ρ, µ) ′Xt + b(u; ν, µ)] .
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� We seen in the previous sections that this process has the following weak positive

AR(p) representation:

xt+1 = νµ+ ρ′Xt + εt+1 ,

� where {εt} is a conditionally heteroskedastic martingale difference:

– ⇒ E(εt+1 | εt) = 0

– whose conditional variance is V (εt+1 | εt) = νµ2 + 2µρ′Xt,

� and whose conditional Laplace transform is given by:

E
[
exp(uεt+1) | εt

]
= E

{
exp

[
u(xt+1 − νµ− ρ′Xt) |xt

]}
,

= exp [a(u; ρ, µ)′Xt + b(u; ν, µ)− u (ν µ+ ρ′Xt)] ,

= exp [(a(u; ρ, µ)− uρ)′Xt + b(u; ν, µ)− u ν µ] .
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5.6.2 The Stochastic Discount Factor

� The one-period SDF Mt,t+1 is assumed to be given by:

Mt,t+1 = exp [−β − α′Xt + Γt εt+1]

× exp
[
−a (Γt; ρ, µ)′ Xt − b (Γt; ν, µ) + Γt (ν µ+ ρ′Xt)

]
� with stochastic risk-correction coefficient given by Γt = γo + γ′Xt.

� It is built in such a way that:

–
dQt,t+1

dPt,t+1
=

Mt,t+1

Et[Mt,t+1]
is a density :

Mt,t+1

Et[Mt,t+1]
> 0 and Et

[
Mt,t+1

Et[Mt,t+1]

]
= 1;

– the no-arbitrage restriction is explicitly satisfied : Et[Mt,t+1] = exp(− rt) if

and only if rt = β + α′Xt.
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� A “generalization” of the Lemma - Let us consider the functions:

a(u; ρ, µ) =
u

1− uµ
ρ and b(u; ν, µ) = −ν log(1− uµ) ;

then, we have:

� Lemma :
a(u+ g; ρ, µ)− a(g; ρ, µ) = a(u; ρ∗, µ∗)

b(u+ g; ν, µ)− b(g; ν, µ) = b(u; ν, µ∗)

with ρ∗ =
1

(1− gµ)2
ρ, µ∗ =

µ

1− gµ
,

and we will consider the case g = Γt.
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5.6.3 The Affine Positive Term Structure of Interest Rates

� The price at date t of the zero-coupon bond with time to maturity h is :

B(t, t+ h) = exp(c′hXt + dh) , h ≥ 1 ,

� where ch and dh satisfies, for h ≥ 1, the recursive equations:

ch = −α+
[
a(c1,h−1 + Γt; ρ, µ)− a(Γt; ρ, µ)

]
+ c̄h−1

= −α+ a(c1,h−1; ρ∗, µ∗) + c̄h−1 ,

dh = −β +
[
b(c1,h−1 + Γt; ν, µ)− b(Γt; ν, µ)

]
+ dh−1

= −β + b(c1,h−1; ν, µ∗) + dh−1 ,

� where c̄h−1 = (c2,h−1, . . . , cp,h−1,0)′, and with initial conditions c0 = 0, d0 = 0 (or

c1 = −α, d1 = −β). If xt = rt, then c1 = −e1 and d1 = 0.
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� The affine positive term structure of interest rates is given by:

R(t, t+ h) = −
1

h
logB(t, t+ h) = −

c′h
h
Xt −

dh

h
, h ≥ 1 ,

� positivity of the yields : Since rt = R(t, t + 1) = β + α′Xt, and since xt is a

positive process, the short rate process will be positive as soon as β and α are

nonnegative.

� The positivity of rt implies that of R(t, t+h), at any date t and time to maturity

h, because R(t, t+ h) = −1
h

logEQ
t [exp(−rt − . . . −rt+h−1)].

� This is the discrete-time multiple lags generalization of the (continuous-time

affine) Cox-Ingersoll-Ross (1985) model.
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5.6.4 The Positive Risk-Neutral Dynamics

� The risk-neutral Laplace transform of xt+1, conditionally to xt, is given by:

EQ
t [exp(uxt+1)] = Et

[
Mt,t+1

Et(Mt,t+1)
exp(uxt+1)

]
= exp

{
[a(u+ Γt; ρ, µ)− a(Γt; ρ, µ)]′ Xt + [b(u+ Γt; ν, µ)− b(Γt; ν, µ)]

}
= exp [a(u; ρ∗, µ∗)′Xt + b(u; ν, µ∗)]

� Under the risk-neutral probability Q, xt+1 is a positive weak AR(1) process of the

following type:

xt+1 = ν µ∗ + ρ∗′Xt + ηt+1 ,

� with ρ∗ =
1

(1− Γt µ)2
ρ > 0 and µ∗ =

µ

1− Γt µ
> 0, and where ηt+1 is such that

E(ηt+1 | ηt) = 0 and V (ηt+1 | ηt) = ν(µ∗)2 + 2µ∗ρ∗′Xt.
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