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5.1 An Empirical Analysis of Gaussian AT SMs

5.1.1 Description of the Data

[0 The CRSP data set on the U. S. term structure of interest rates (treasury zero-
coupon bond yields), that we consider in the following application, covers the
period from June 1964 to December 1995 and contains 379 monthly observations

for each of the nine maturities : 1, 3, 6 and 9 months and 1, 2, 3, 4 and 5 years.

0 Summary statistics about the above mentioned (annualized) yields are presented

in Table 1 :



Table 1 : Summary Statistics on U. S. Monthly Yields from June 1964 to December 1995.
ACF (k) indicates the empirical autocorrelation between yields R(¢,h) and R(t — k,h), with h and

k expressed on a monthly basis.

Maturity 1-m 3-m 6-m 9-m 1-yr 2-yr 3-yr 4-yr 5-yr

Mean 0.0645 0.0672 0.0694 0.0709 0.0713 0.0734 0.0750 0.0762 0.0769
Std. Dev. 0.0265 0.0271 0.0270 0.0269 0.0260 0.0252 0.0244 0.0240 0.0237
Skewness 1.2111 1.2118 1.1518 1.1013 1.0307 0.9778 0.9615 0.9263 0.8791
Kurtosis 4.5902 4.5237 4.3147 4.1605 3.9098 3.6612 3.5897 3.5063 3.3531
Minimum  0.0265 0.0277 0.0287 0.0299 0.0311 0.0366 0.0387 0.0397 0.0398
Maximum 0.1640 0.1612 0.1655 0.1644 0.1581 0.1564 0.1556 0.1582 0.1500

ACF(1) 0.9587 0.9731 0.9747 0.9745 0.9727 0.9780 0.9797 0.9802 0.9822
ACF(5) 0.8288 0.8531 0.8579 0.8588 0.8604 0.8783 0.8915 0.8986 0.9053
ACF(10) 0.7278 0.7590 0.7691 0.7699 0.7683 0.7885 0.8021 0.8075 0.8212
ACF(20) 0.4303 0.4631 0.4880 0.4996 0.5156 0.5742 0.6051 0.6193 0.6431
ACF(30) 0.2548 0.2682 0.3016 0.3213 0.3518 0.4358 0.4725 0.4994 0.5187
ACF(40) 0.1362 0.1415 0.1677 0.1853 0.2160 0.3056 0.3427 0.3780 0.3961




[J The term structure of ZCB vyields is, on average:

e upward sloping

e and the yields with larger standard deviation, positive skewness and kurtosis

are those with shorter maturities.

e Moreover, vields are highly autocorrelated with a persistence which is in-

creasing with the time to maturity.



5.1.2 Estimated Models

] In the present empirical analysis we follow an endogenous approach, given that
it gives several important advantages coming from the observations we have
about the factor, that is, the short rate in the scalar case, or yields at different

maturities in the multivariate framework.

[0 First we are able to detect stylized facts giving us the possibility to justify the
AR(p) model we propose for the historical dynamics of (z;) : indeed, a large
empirical literature on bond yields show that interest rates have an historical
multi-lag dynamics [see, among the others, Hamilton (1989), Christiansen and

Lund (2003), Cochrane and Piazzesi (2005)].



[J Second, observations about the Gaussian-distributed factor lead to an exact
maximum likelihood estimation of historical parameters: in this way, we are able
to test hypotheses using likelihood ratio statistics, and rank the models in terms

of various information criteria.

O Finally, the difference between directly observed and estimated factor values

determine model residuals that can be used to derive various diagnostic criteria.
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5.1.3 Estimation Method

0 The methodology we follow to estimate the parameters of the endogenous Multi-

Lag term structure models is based on a consistent two-step procedure.

[ In the first step, thanks to observations on the K-dimensional endogenous factor
(), we estimate the [K(1+ Kp) + (K(K + 1)/2)]-dimensional vector of param-
eters ©p = [V, vec(P)’, vech(XZ3X')]’, characterizing the historical dynamics (x:),

by Maximum Likelihood (ML).

0 In the case of a Gaussian VAR(p) process, the ML estimator coincides with the

OLS estimator.
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OLS Estimation of a Gaussian VAR(p) process with observable factor

[0 Notation: X := (x1,...,27) is (K,T) matrix of observations; B := (v, ¥4,...

is (K, Kp-+ 1) matrix of parameters;

- -
Tt
O Z; .= Tt—1 , Z:=(Zo,...,Z7r_1)is ((Kp+ 1),T) matrix.

| Tt—p+4+1 _

O U :=(e1,...,er) is (K, T) matrix. We, thus, can write X =BZ+ U.

O x :=wvec(X) is (TK, 1) vector, B :=vec(B) is (K?p+ K, 1) vector.
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OLS estimator : vec(B) = B = vec(X Z'(ZZ')™1);

Given that 2 = E(e;€}), we estimate this matrix by:

T
1 PPN 1 ~ ~ 1 _
fz A UU’:?(X—BZ)(X—BZ):?X(IT—Z’(ZZ’) 17)X'.
t=1
How do we select the number of lags p (VAR order selection) in the VAR(p)

model ?

minimizing the Forecast Mean Square Error we obtain a criterion called Final

Prediction Error (FPE):

T+ Kp+ 11" .
Fl ] de@o,

FPE@>=[
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2pK2
T

b) Akaike's Information Criterion (AIC): AIC(p) = Indet(2(p)) +

c) Hannan-Quinn Criterion (HQ): HQ(p) = In det(ﬁ(p)) + wpKQ;

InT
d) Schwarz Information Criterion (SC): SC(p) = In det(Q(p)) + n—pK2

e the selected AR order p is the one minimizing the criterion.
e Small sample comparisons: p(SC) < p(AIC) if T > 8; p(SC) < p(HQ) for all T

p(HQ) < p(AIC) if T > 16.
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J In the second step, using observations on yields with maturities different from
those used in the first step and for a given estimates of vech(XX'), we estimate
the [K(1 4+ Kp)]-dimensional vector of parameters ©¢g = [(v*)’, vec(P*)']’, char-
acterizing the risk-neutral dynamics of (x:), by minimizing the sum of squared

fitting errors between the observed and theoretical yields.

O In other words, in this second step and for a given ©p, we estimate (%,I:).

[J More precisely, in the scalar case, we estimate ©¢ by nonlinear lest squares
(NLLS), while, in the multivariate case, these parameters are estimated by

Constrained NLLS.
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[0 The constraints are imposed to satisfy internal consistency conditions on (C}, Dy,)
implied by the absence of arbitrage opportunity principle [see Lecture 4 and next

slides].

[J Given the complete set of 9 maturities of our data base, and given a number m
of yields used to estimate the vector of historical parameters ©p, we denote by
H* the set of remaining maturities used to estimate the vector of risk-neutral

parameters Og.

O In the AR(p) Factor-Based case, z; is the one-month yield to maturity R(t,t +

1m) = r; expressed at a monthly frequency.
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0 In the bivariate VAR(p) Factor-Based case the factor is given by :
z; = [R(t,t + 1m), R(t,t + 60m) — R(t,t + 1m)]’,

where [R(t,t + 60m) — R(t,t + 1m)] is the spread at date t between the five-year

and one-month yield to maturity, expressed at a monthly frequency.

[0 The NLLS estimator for the AR(p) case, is determined by :

( é@ = A?“g min@Q 52(@(@),

T (1)
S2(©g) = > ) [R(t,t+h) — R(t,t + h)]?,

\ t=p heH;

given the set H] of maturities used to estimate the risk-neutral parameters;

R°(t,t + h) is the observed yield, while R(t,t + h) is the model-implied one.
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[0 The constrained NLLS estimator, in our bivariate model specification, is given

by :
( é@ = Arg min@Q 52(@@)

T
S2(©g) = > [R°(t,t+h) — R(t,t + h)]?,
9 t=p heH; (2)

T
s. t. Y [R°(t,t+60m) — R(t,t +60m)]* =0,

\ t=p

[0 The constraint in the minimization program (2) guarantees the absence of arbi-

trage opportunity on the five-year yield to maturity.
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5.1.4 Results for the AR(p) Factor-Based Term Structure Models

[0 The maximum value of the mean Log-Likelihood and the values of the estimated
vector of parameters ©p = (v, p1,...,pp,0) of the AR(p) Factor-Based Term
Structure models, for p € {1,...,6}, are presented in Tables 2 and 3 [the t-values

are given in parenthesis].

0 We denote with mlogL the mean log-Likelihood of the AR(p) model : mlogL =

lOgL(@[ED|$1, <. 7$T—p)/(T - p)

[0 The Akaike Information Criterion (AIC) (for ranking among models) is given by

2mlogL — (2k/(T — p)), with k& denoting the dimension of Gp.
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Table 2 : AR(p) Factor-Based Term Structure models. Maximum value of the mean

Log-Likelihood, AIC and parameter estimates of v and o. (**) denotes a parameter significant

at 0.05; (*) denotes a parameter significant at 0.1.

AR(1) AR(2) AR(3) AR(4) AR(5) AR(6)
mlogL 5.95657 5.95868 5.96082 5.96134 5.97224 5.97092
AIC 11.8973 11.8961 11.8950 11.8907 11.9071 11.8990
v 0.00023 0.00021 0.00023 0.00021 0.00019 0.00019
[2.6725] **  [2.4822] **  [2.6598] **  [2.4761] **  [2.1571] * = [2.1262] **
o2 0.00000039  0.00000039 0.00000039 0.00000039 0.00000038 0.00000038

[13.7483] ** [13.7301] ** [13.7118] **

[13.6937] **

[13.6754] **

[13.6571] **
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Table 3 : AR(p) Factor-Based Term Structure models Parameter estimates of (¢1,...

7901))'

(**) denotes a parameter significant at 0.05; (*) denotes a parameter significant at 0.1.

AR(1) AR(2) AR(3) AR(4) AR(5) AR(6)
¢1  0.9580 ** 0.8798 ** 0.8861 **  0.8912 **  0.8814 **  0.8806 **
[65.5620] [17.2393] [17.1525] [17.1688] [17.1628]  [16.9714]
©2 0.0811  0.1547 **  0.1456 *  0.1672 **  0.1675 **
[1.5938]  [2.2869] [2.0843] [2.4260] [2.3885]
03 —~0.0829 * —0.1372* —0.1595 * —0.1586 **
[-1.6459] [-1.9204] [-2.3048] [-2.2623]
©a 0.0608 —0.0790 —0.0798
[1.1455]  [-1.1788]  [~1.1240]
©s 0.1557 **  0.1510 **
[3.1048] [2.4443]
©6 0.0053
[0.1232]
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[J An examination of the above displayed parameter estimates show, first of all,
that the historical dynamics of the (one-month to maturity) short rate is not
Markovian of order one, given that, in the AR(5) and AR(6) specifications, the

parameters (1, 2, 3, ps) are always significative.

[0 The minimum value of the mean NLLS criterion [SQ((:)@)/T*] and the values of
the estimated vector of risk-neutral parameters ©g = (u*,gp’{,...,go;), with p &€
{1,...,6}, are presented in Tables 5 and 6 [the t-values are given in parenthesis].
We also rank the models in terms of the Root Mean Square Error (RMSE) and

Mean Absolute Error (MAE).

22



Table 4 : AR(p) Factor-Based Term Structure models. Minimum value of the mean NLLS

criterion, RMSE, MAE and parameter estimates of v*. (**) denotes a parameter significant at

0.05; (*) denotes a parameter significant at 0.1.

AR(1) AR(2) AR(3) AR(4) AR(5) AR(6)
S2(©g)/T* 0.00000054 0.00000051 0.00000050 0.00000048 0.00000047 0.00000046
RMSE 0.000736 0.000716 0.000709 0.000696 0.000687 0.000679
MAE 0.000530 0.000526 0.000528 0.000524 0.000517 0.000509
v+ 0.000110 0.000151 0.000152 0.000148 0.000148 0.000152
[33.2526] ** [22.6031] ** [22.9266] * [22.9794] ** [22.7051] ** [22.4479] **

23



Table 5 : AR(p) Factor-Based Term Structure models. Parameter estimates of (¢7, ..

(**) denotes a parameter significant at 0.05; (*) denotes a parameter significant at 0.1.

L)

AR(1) AR(2) AR(3) AR(4) AR(5) AR(6)
@* 0.9899 * 05076 ** 07333 *  0.7758 *  0.7382 **  0.7037 **
[1877] [0.6003] [14.2703]  [15.4922]  [14.2057]  [13.3209]
o3 0.4788 **  —0.0299  0.2291 **  0.2947 **  0.2998 **
[0.1313] [-0.4132]  [2.8931] [3.6124] [3.6802]
% 0.2832 **  —0.3860 * —0.1600 **  —0.1069
[7.5221] [-5.3681] [-2.0834] [-1.3898]
o 0.3685 **  —0.1977 ** 0.0123
[10.2233]  [-2.6864] [0.1609]
oL 0.3126 *  —0.2173 **
[8.4180] [—2.9386]
oL 0.2961 **
[7.7697]
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5.1.5 Results for the bivariate VAR(p) Factor-Based Term Structure Models

[J As in the scalar case, we present the maximum value of the mean Log-Likelihood
and the values of the estimated vector of parameters ©p = [/, vec(P)’, vech(ZX')']

of the bivariate VAR(p) Factor-Based Term Structure models, for an AR order

p=1and p =2,

[l These results are presented in Tables 6 and 7. We have also estimated the
historical parameters of the above mentioned bivariate VAR(p) model, for p

larger than 2, but the AIC criterion has indicated the first two AR orders as the

preferred ones.
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Table 6 : VAR(p) Factor-Based Term Structure models. (**) denotes a parameter significant

at 0.05; (*) denotes a parameter significant at 0.1.

VAR(1) VAR(2)
mlogL 12.6403 12.6837
AIC 25.2330 25.2984
V1 0.000065 0.000132
[0.5856] [1.2262]
v 0.000080 0.000026
[0.8157] [0.2701]
a% 0.00000039 0.00000036
[5.94750] ** [6.02614] **
021 -0.00000028 -0.00000026
[-6.0995] ** [-6.2100] **
ag 0.00000030 0.00000028
[7.6713] ** [8.0731] **
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Table 7 : VAR(1) and VAR(2) Factor-Based Term Structure models. Parameter estimates of

(p1,02). (**) denotes a parameter significant at 0.05; (*) denotes a parameter significant at 0.1.

VAR(1) VAR(2)

o 0.9742 0.0719 1.3318 0.6207
[59.8835] **  [2.2174] **  [15.0111] ** [7.0095] **

0.0091 0.8769 —0.2744 0.4353
[0.6388] [30.7835] **  [-3.4988] *  [5.5601] **

P —0.3648 ~0.5762
[-3.6117] **  [-5.8201] **

0.2893 0.4642
[3.2397] *  [5.3020] **
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[J If we consider the parameter estimates of Tables 6 and 7, we observe that the
joint historical dynamics of short rate and spread is not Markovian of order one,
given that, in the VAR(2) specification, the parameters in the second autore-

gressive matrix oo are significantly different from zero.

[J Moreover, the AIC indicates this model as the preferred one. Table 6 shows also

that the constant term (v1,1»)’ is not significative for both AR orders.

0 We present the minimum value of the mean NLLS criterion [SQ((:)Q)/T*] and the
values of the estimated vector of risk-neutral parameters ©qg = [(v*)’, vec(P*)'],
for the bivariate VAR(1) and VAR(2) Factor-Based Term Structure models, in

Tables 8 and 9.
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Table 8 : VAR(p) Factor-Based Term Structure models. Minimum value of the mean NLLS
criterion, RMSE, MAE and parameter estimates of (v],v3). (**) denotes a parameter significant

at 0.05; (*) denotes a parameter significant at 0.1.

VAR(1) VAR(2)
S2(8y)/T* 0.00000009 0.00000008
RMSE 0.000297 0.000283
MAE 0.000208 0.000198
Vi —0.000058 —0.000055
[—6.6459] ** [—4.9423] **
V3 0.000072 0.000071
[5.7860] ** [4.5783] **
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Table 9 : VAR(1) and VAR(2) Factor-Based Term Structure models. Parameter estimates of

(P, P5). (**) denotes a parameter significant at 0.05; (*) denotes a parameter significant at

0.1.

VAR(1) VAR(2)

P 1.0131 0.1105 1.3154 0.6020
[805.8869] **  [34.5743] **  [28.4716] ** [9.5120] **

—0.0156 0.9072 ~0.2528 0.4142
[-8.6611] **  [203.2978] ** [-3.5778] **  [4.2509] **

P —0.3004 —0.4890
[-6.5177] ** [-7.8923] **

0.2342 0.4839
[3.3244] **  [5.0769] **
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0 We find that, also in this bivariate risk-neutral (pricing) framework, the lagged
values of the short rate and spread play an important role in the model specifi-
cation. One may observe the significativity of all risk-neutral AR coefficients in

the VAR(2) specification.

[0 In other words, a VAR(2) specification for the historical and risk-neutral dynamics
of the factor driving term structure shapes, lead to propose a bivariate term
structure model which is able to fit yields to maturity better than the VAR(1)

and AR(p) specification.
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5.1.6 In-sample fit of the Yield Curve

0 Summary of in-sample fit performances, using RMSE and MAE.

[J The bivariate setting strongly dominate the scalar one, regardless the number of

lags.

0 In the bivariate setting, the introduction of an additional lag (marginally) im-

proves the fitting performance.

AR(6) VAR(1)  VAR(2)

RMSE 0.000679 0.000297 0.000283

MAE 0.000509 0.000208 0.000198
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5.1.7 Do these models explain the Violation of the EHT ?

[J Short Horizon Expectation Hypothesis Tests :

lags are useful !

Short Horizon

m = 3 months

m = 6 months

m = 9 months

h = 6 months
2-Factor VAR(1)
2-Factor VAR(2)

-0.6942 (0.2533)
0.5828 (0.3485)
-0.3800 (0.3837)

h =9 months
2-Factor VAR(1)
2-Factor VAR(2)

-0.8863 (0.3238)
0.4133 (0.3469)
-0.5480 (0.3960)

-0.4023 (0.2429)
0.4722 (0.2693)
-0.3890 (0.3182)

h = 12 months
2-Factor VAR(1)
2-Factor VAR(2)

-1.3226 (0.3530)
0.2454 (0.3486)
-0.6935 (0.4069)

-0.7867 (0.2381)
0.3187 (0.2710)
-0.5272 (0.3248)

-0.4371 (0.1312)
0.3796 (0.2430)
-0.3675 (0.2930)
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0 Long Horizon Expectation Hypothesis Tests: some problem !

Long Horizon

m = 1 year

m = 2 years

m = 3 years

h = 4 years
2-Factor VAR(1)
2-Factor VAR(2)

-1.8078 (0.2981)
-0.8569 (0.3536)
-1.4088 (0.4084)

-0.8380 (0.2889)
-0.0085 (0.3414)
-0.2338 (0.3864)

-0.0421 (0.2682)
0.8626 (0.3514)
0.9368 (0.3843)

h =5 years
2-Factor VAR(1)
2-Factor VAR(2)

-1.7470 (0.3291)
-1.1444 (0.4102)
-1.6686 (0.4635)

-0.9720 (0.3199)
-0.0033 (0.3953)
-0.2112 (0.4373)

-0.2378 (0.3283)
1.1279 (0.3970)
1.2060 (0.4267)
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J Which " directions” should we follow to improve the empirical performances of a

given model ?

1) Adding new factors (latent and/or observable) or sources of non-linearities
(stochastic volatility, jumps, switching of regimes) able to explain the strong
persistence in yields [see Dai, Singleton and Yang (2007, RFS), Monfort and

Pegoraro (2007, JFEC) and Gourieroux, Monfort, Pegoraro and Renne (2012)].

11) Estimating model parameters in a way coherent with interest rates persistence

[see Jardet, Monfort and Pegoraro (2012, JBF)].
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5.2 Alternative Estimation Procedures for Gaussian AT SMs

5.2.1 MLFE through the "Inversion Procedure”

[0 Let us consider a Gaussian VAR(1) Factor-Based term structure model in which
the latent factor (z;) is K-dimensional. Let us consider, at date ¢, K yields

(among the M in the data base) that we organize in the vector R} = [R(t,t +

h1),..., R(t,t + hi)]'".
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[J Now, the affine relation between this vector of yields and the factor x; can be

written in the following way:

R =Cgxt+ Dk, Cxk =Cx(0), Dk = Dk(0), 0 = (6",09)

where Cig =

[ Cin

h1

 Clh
hx

_CE
h1

 CK
hx
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0 it is a linear system of K equations in K unknowns (the scalar variables in x).

[0 Given the observed yields Rg(t), we can easily solve for x; and write:

It — CI_(l [R{f — DK] .

[0 Given that the conditional p.d.f.  f(xt41]|x:) is known (it is the p.d.f. of K-
dimensional conditional Gaussian process with conditional mean FEi[z;+1] = v +
®x: and conditional variance Vi[z;4+1] = €2), we have that (exercise):

1

m f(@iga| ).

f(R{iﬂR{():
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Given the set of observations at times {1,...,T}, the log-Likelihood function is
given by:
T
L(0) =) log f(R{|REL),
t=1
assuming f(RE|RE) = f(RK), i.e., the marginal density.
The Maximum Likelihood Estimator (MLE) is : 0ML = ArgMaxe £L(0) [Pearson

and Sun (1994)].

Here we have assumed that K yields are observed without errors — in reality

they are reconstructed by interpolation/fitting techniques.

Moreover, we have to decide, in our data base, which yields (residual maturi-

ties) are observed without errors.
39



O In small sample (quarterly observations), different results (estimates) are ob-

tained when different maturities are used.

[0 Chen and Scott (1993) tackle this problem assuming that additional yields are

observed with errors.

[J Let us assume that M — K additional yields are measured with errors, besides

the K observed without errors:

Rt =Cy xaxe+Dy_x +m,

R " =[R(t,t + hg41),..., Rt t+ ha)],
where the conditional distribution of the measurement errors (7;) is known and
given by h(n;|n:_1). Moreover, n; L RM~ %, n, L RK.
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[0 Then, it is possible to prove that (exercise) the Log-Likelihood function is given
by:

T
L£*(0) = L£(0) + ) log h(n:|ni-1),

t=1

assuming h(ni|no) = h(n1), i.e., the marginal density.
[0 The Maximum Likelihood Estimator (MLE) is : ML = ArgMaxy L£L*(0) [Chen

and Scott (1993)].

[1 We can not apply the two above mentioned estimation procedures if p > 1,
given that the inversion of the yield-to-maturity formula (using observed yields)

provides at two subsequent dates two different values for the same scalar factor.
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5.2.2 MLFE through Kalman Filter recursions

0 If we assume that all yields are observed with errors, the Gaussian VAR(1)-based

ATSM can be written in a State Space form:
RM =Cpn(0) 2t + Dy (0) + 1, me ~ IIN(0,Q), (Measurement Equation),

e =v+DPxy_1+¢e, e ~ IIN(O,R), (Transition Equation),

ntJ—gt-

O RM is the (M x 1) vector of observed variables (observed yields);

O z; is the (K x 1) vector of unobserved factors (latent factors).

[0 Unknown vector of parameters we have to estimate is 6 = (6p,0g)’.
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Statistical Inference:
— estimate 6 by M LFE;

— estimate the unobserved latent factors z; (filtering);

The Kalman Filter (KF) is a recursive algorithm consisting of a prediction

and update step.

It is a Linear Gaussian State Space Model and, thus, parameters can be efficiently
estimated by Maximum Likelihood with the (exact !) Likelihood function cal-

culated by the Kalman Filter. KF is optimal in MSE sense.

Notation: RM = (RM,R),,..., Ry") (date-t information set);
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[1 Some definitions:

— Let x4y '= E [azﬂRf‘{l] = v+ dx,_1;,_1 be the best linear predictor of z;

given the history of observable until ¢t — 1;

— LetR) , =E [R,{” | Ri‘{l] = Cy xyr—1 + Dy be the best linear predictor of R

. M .
given R,”;

— Let zyy := FE [xﬂ%] be the best linear predictor of x; given the history of

observable until ¢;
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0 What is the purpose of the Kalman Filter 7
— Let us assume we have x;;_; and R%_l.
— We observe a new RM.

— We need to obtain xy;.

— Note that ;41 = v 4+ Py, and RY

1yt = Cum Tyyar + Dy, SO we can go back

to the first step and wait for Ri‘_{l.

— 50, the key question is how to obtain z;, from z,,_, and RM.
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Let us assume we adopt the following equation to get x;; from z,,_; and RM:

Lt — Lt|t—1 + K (Rijtw - R%_l) — Lft-1 + K (RiM —Cum Lt|t—1 — D),
This is formula has a probabilistic justification (to follow)

What is IC; 7 It is the Kalman filter gain and it measures how much we update

z;;—1 as a function of the error we make in predicting RM.

How do we find optimal K; 2 The KF is about how to build K; such that we

optimally update z;; from z;;_1 and R}’
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[1 Some additional definitions:

—Let>,; , =F [(azt — xyp—1) (Tt — Tpp—1)’ | Ri‘{l} be the predicting error variance-

covariance matrix of x; given the history of observable until ¢t — 1.

— Lety 1 :=F [(RI{” — R%—J (RM — R%_l)’ | Ri‘{l} be the predicting error vari-

ance covariance matrix of Ri” given the history of observable until ¢t — 1.

— Let Z,, ' = E [(mt — xy) (8 — xt|t)’|%] be the predicting error variance co-

variance matrix of x; given the history of observable until t.
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[J Finding the optimal IC;:
— We search for K; such that — Min 2.

— It can be shown that, if it is the case:

-1
Ki=Zy-1Cm (ClZep—1Cu + Q)

— we will provide some intuition later.

O Given X;;1, R} and x;;,_1, we can now set the Kalman Filter algorithm.
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D leen Zt|t—1:

Q1 =Cor Zgp—1Cn + Q

and

E (Riw — RN ) (¢ — $t|t—1)/ | R%1 — wa Zt|t—1

t)t—1
[l Given %,;;_;, we can also compute:

1
Ki=-1Cu (ChyZii—1Cu + Q) = Zyi—1Cus

D leeﬂ xt|t—1:

R%—l —_— CM mt|t—1 —l— DM

Q_l

tlt—1
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[ Once we have >,;_;, RM, zy;—1 and K¢, we compute:

Lt — Lt|t—1 + Kt (Ri\/l - R%_l) — Ltft-1 + Ky (Riw —Cum Lt|t—1 — Dur) ,

] and

Zt|t =FE |(zt— $t|t) (vt — CUt|t)/ | % — Zt|t—1 — KiCum Zt|t—1

where we eXD|OIt the fact that Tt — mt|t == It — mt|t_1 — ’Ct (R%]w — CM 33t|t—1 — DM)

] Given ZW, we compute:

Zt—|—1|t =& Zt|t '+ R
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Given zy;, we can compute:

L1t — P Lt|t 5

Ri\ffl-llt = Cm @1 + Py

Therefore, from x;;_1, 24;—1 and RM we compute xy and 2.
We also compute RM  and ;1. Why 7

tlt—1

To calculate the likelihood function of RY = (R¥, RY |,..., R}") (to follow).

This estimation methodology is adapted also to the case p > 1 (companion

form).
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0 The Kalman Filter Algorithm: A Review

e We start with x;, 1, X;;_1 and we observe R}. Then:
Qt|t—1 — Cf\/[ Zt|t—1 Cvu+Q
Ri\ﬁ_l = Cm xyi—1+ Dum .
e Filtering Step:
Ke = Zt|t—1 Cm (wazﬂt—ch + Q)_l — Zt|t—1 Cum
24 = -1 — K Cnr g1
Lt — Lt|t—1 + Kt (R{M —Cum Ltt—1 — Dur) ,

e Prediction Step:

L1t — V + cbxt|t7

Zt—|—1|t =P Zt|t "+ R.

-1
Qt|t—1
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[0 Some intuition about the optimal K; = <,;,_1Cy (C};Zs—1Cm + Q)_l
e As we have seen before, we can write K = Zt|t_1 Cym Ql

tlt—1

e If we have made a big mistake in forecasting z;;_; using the past information

(i.e. ;1 large) we give a lot of weight to the new information (K; large).

e If the new information is noise (Q large) we give a lot of weight to the old

prediction (K; small).
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O An important step in the Kalman filter is to set the initial conditions

[J Initial conditions:
1. z1p0
2. Tq)0
0 How do we fix them 7 Since we consider only stable system (stationary VAR

dynamics) the standard approach is to set x; = E(z:) (marginal mean) and

340 = V() (marginal variance).
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0 Writing the Log-Likelihood Function

e We want to write (to calculate) the likelihood function of RY = (RY, R} |,... R}):
L£O) = Inf(RY,RM ... RM|0)—ZInf(RM|Rt )
t=1
T
= - —In27r—|——ln|§2t,t |+ = th J1 v
t=1 t=1
e where:
Ut = RM R% 1 — Riw — CM :Btlt—l — DM

Qtyt—l — wa Zt|t—1 Cu+ Q.
e Remember: KF calculates £(6) while its maximization is obtained through a
numerical algorithm (BFGS, BHHH, ...) and provides the MLE 5T.
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5.2.3 The Adrian, Crump and Moench (2012, JFE) Approach

O A Gaussian ATSM with VAR(1) K-dimensional factor x;:

Tip1 = UV + Prr+ g,

e and with exponential-affine SDF (I'y = v, + v x¢):

1
Miiy1 = €xp |—r + r2€t+1 — Erirt ,

e has a one-period geometric bond return following:
pt+1,T) = r—Zwlt+1, TDwit+1,T) + wit+1, TV —wit+1,T) ey,

where w(t+ 1, T) = —(X'Cr_;_1) is an K-dimensional vector.
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Adrian, Crump and Moench (2012) exploit the fact that the one-period excess

bond return:

reli 7D == log B(t + 1,t + h) — log B(t,t + h) — r;

is conditionally Gaussian and linear in (v,,7)

in order to make their estimation computationally fast, even for a large number

of factors.

Let us present their approach in the following slides.
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[0 The Adrian, Crump and Moench (2012) approach:

e Given the VAR(1) factor x;, the SDF M, 41 = exp [—r; — Mjei41 — 3M47] and the

excess bond return rxgi_ll), from B(t,t + h) = Ey[My4+1 Bt + 1,t+ h)] we find:
1=F |exp (ral"7V — 1 A
t+ 2
e Under the assumption that {mgi_ll),etﬂ} are jointly normally distributed:
_ _ 1 _
E, [rmﬁf_ll)] = Couv (mcg:_ll), 57’5+1Ft) ~5 Vary (mcg:_ll))
— C (h=1) 1y (h=1)
= Couv(rz, 17 ei1) (o+vme) — 5 Var (rog
_ 1 _

— Bt(h 1), (,70 + fyajt) — 5 Vary (T’xgill)) :

where Bt(h_l)’ = Covy (rwgﬁ__ll),5;+1).
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(h—1)

;11 Into an expected component and an

e Now, we can always decompose rx

unexpected one:
Tng__ll) = F, [Tng__ll)} + (rmg:l) — FE; [m:gf__ll)])
e and the latter can be further decomposed into a component conditionally corre-
lated with ;41 and another that is conditionally orthogonal to e;41:
rafyy? = B [ranl] = A0 Ve + ey

where the return pricing errors eg_ff__ll) are conditionally i.i.d. with variance o2.

e Given that Var; (razgi_ll)) = " 1gh~1) L 52 can thus write:

_ _ 1 _ _ _ _
ref ) = B (o b ) = 5 (BB 4 0%) + B0 Ve + el
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e In their baseline model they assume z; is observable and made of a linear combi-
nation of yields, such as principal components. They estimate model parameters
using holding period returns based on the same set of yields. Per construction,

this implies 8, = 5.

e Stacking the system across h € {2,..., H} maturities and t € {1,...,7T — 1} time

periods, we rewrite it as:

1
re =B (ol { +vX_) — 5 (B*vec(Ix) + 0°1g_1) 17 + BE+E

e where rx is a (H —1,T — 1) matrix of excess returns,

B=[B? 3| ... |pU)] is a (K,H — 1) matrix of factor loadings
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1, is an /-dimensional vector of ones;
X_=[X1,...,Xr_1] is a (K, T — 1) matrix of lagged pricing factors;
B* = [vec(B(Q)B(Q)’) | vec(BPBGEY | ... |vec(B(H)5(H)’)}/ isa (H — 1, K?) matrix;

£ is a (K, T — 1) matrix of normalized residuals {&;},

and EFisa (H—1,T — 1) matrix of {e§h>} residuals.

61



[l Estimation Procedure:

15t) We estimate 0p = (v, ®,3) by OLS, and then we build £ from {&}

27d) Run the following regression:

re = all, ;+pE+cX_ +FE

/ 1 * 2
a = [3%—5 (B vec(Ig) + o 1H_1)
c = B

in order to obtain:

/

[a|§'|a] — 12 Z/(Z Z')"! where Z = [1T_1 & x|

we collect the associated residuals in E, in order to calculate 52 = Tr(E E’)/(H—

1)(T — 1), and we calculate B* from B'.
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3"‘d) Given the previously estimated parameters, we easily find:

_1 ~
gc

5= (87
Y, o 1 % ~2 .
and from 'y, =a 4+ 5 (B vec(Ig) + o 1H_1) we retrieve:
~ P ANl P ~2
Yo = (ﬁﬁ) B a—|—§ (B vec(Ig) + o 1H—1) :
e From the estimated model parameters, we can generate e zero-coupon yield

curve using the recursive equations (Cj, D;) and an identification between ("

and (), is easily found (exercise).

e Possible generalization to p > 1.
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5.3 Ang and Piazzesi (2003, JME)

5.3.1 Purpose of the paper

[0 The authors describe the (particular!) joint dynamics of bond yields and macroe-
conomic variables in a discrete-time Gaussian Vector Autoregression setting,
where " causality” and no-arbitrage restrictions are imposed in order to guaran-

tee the theoretical and empirical tractability of the model.

[J Using an affine discrete-time term structure model with inflation and economic
growth factors, along with latent variables, they investigate how macro variables
affect bond prices and the dynamics of the yield curve.
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5.3.2 Main results

0 They find that:

— the forecasting performance of a Gaussian VAR improves when no-arbitrage

restrictions are imposed

— and that (no-arbitrage) models with macro factors forecast better than

models with only unobservable factors.

[0 Variance decompositions show that macro factors explain up to 85% of the

variation in bond yields (over short and middle maturities).
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Macro factors primarily explain movements at the short end and middle of

the yield curve.

Unobservable factors still account for most of the movement at the long end

of the yield curve.

They observe (monthly) yields of 1, 3, 12, 36 and 60 months to maturity (1, 12

and 60 observed without errors) from 1952:06 to 2000:12.

Macro-variables are observed from 1952:01 to 2000:12. These variables are

divided in two groups.
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[0 The first group consists of various inflation measures which are based on the
CPI (consumer price index), the PPI (producer price index) of finished goods,

and spot market commodity prices (PCOM).

[0 The second group contains variables that capture real activity: the index of Help
Wanted Advertising in Newspapers (HELP), unemployment (UFE), the growth
rate of employment (EMPLOY) and the growth rate of industrial production

(IP).
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[J This list of variables includes most variables that have been used in monthly
VARS in the macro literature. Among these variables, PCOM and HELP are
traditionally thought of as leading indicators of inflation and real activity, respec-

tively.

O All growth rates (including inflation) are measured as the difference in logs of

the index at time t and (¢ — 12); t in months.
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Tabie 1
Sunmnary statistics of data

Central momezants Atocoriations

MMe=an Stdew Skewr Kurt Lag 1 Lag 2 Lzg 3
1 mth 51316 27399 1.0756 4 6425 09716 0.9453 09323
3 mith 54815 2 AS5D 1.0704 15543 0.5R1s B.9E06 05415
12 mth S.RRLD ZR445 N.3s23 3.RR56 09824 0.9626 0.%457
36 math 62241 27643 07424 3.5000 09875 D.9739 0620
60 mth 64015 27264 06233 3.2719 08892 09722 09687
CPI 3R612 ZRT33 12709 1 3655 09931 09847 09738
PCOM 09455 11.2974 1.0352 A.0273 09634 09162 D.A600
5 | 3.0550 35323 14436 49218 09863 0.9705 0.%521
HELP 66. 7517 23 25T D 1490 1.R66S 09944 [.9900 D.%R30
EMPLOY 1.6554 1.523% D 4620 3.2534 09373 [.2954 0.A410
e 34717 5.3697 03578 3.6502 09599 D.2ER0 0797
UE 5,734 1.5650 04924 3.2413 09906 0.9777 0.%50s

The 1, 3, 12, 36 and 60 month vields are annual zero coupon bond yisids from the Fama Bliss CRSP tond
files. The inflation mezsurss CPI, PCOM and PPI refer to CPI inflation, spot markst cormmodity price

imflaticr. and PPI "Finiched ﬂnn—h-‘u inflaticn resmectively. We calendate the iInflation measure= gt Hme f
milghor, and Pl Mushed (roods) mdiabon respechively. caacwuate the miabhon measure 3t bime !

using log( P, /P,_12) where P, iz ths inflation mdex. The real activity measires HELP, EMPLOY, I[P and
UE refer to the Index of Help Wanted Advertismg in Newspapers, the growth mate of employrcent, the
growth mate in industial preducticn zand the unemploymen: rate -espectively. The zrowth rate in
enployinen: and industnial produwction are caleivlatsd using log(dy/d12) where §, is the smployment o7
industrial production index. For “he macro varabiss, the sampie period is 1952:01 to 2000:12. For the
bond vislds, the sample paiod is 1952:06 1o Z000:12.
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5.3.3 Setup

Historical Factor Dynamics

[0 The multivariate FACTOR (the information used by the investor to price bonds)

is denoted:
Xy = (X7, XM), where
X7 = (f7 .. .,fto_pﬂ’)’, the MACRO factors,
X = f}, the LATENT factors.

O f? denotes a bivariate process of macro factors following a Gaussian VAR(p)

process with p = 12 (monthly observations):
ff = pff+ ...+ paff o+ Qu,uf ~ IIN(O, 1),
Q = (2x2) lower triangular, (p1,...,p12) (2 x 2) full AR matrices.
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O f}* denotes a trivariate process of latent factors following a Gaussian VAR(1)

process:
fit = pfity i, uf ~I1IN(O, 1),

p is (3 x 3) lower triangular AR matrix.

O ubLug

O If we define Fy = (f”, f“) (5-dimensional vector) we can represent the joint

dynamics of the macro and latent factors in the following way:
Ft — CblFt_l —|— .. —|— ¢12Ft_12 —I— Qut , Ut — (ug’, u;j”)’ ~/ IIN(O, I) y

the coefficients of (®,,...,dP12) corresponding to fF

are set equal to zero. More precisely —
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[J The AR matrices are specified in the following way:

O O2x3 P O2x3 .
b, = 1,11 b, = j,11 \vd 2....,121}.
1 [ Osx2 Py ] Y [ O3x2 Oox3 |’ A

[J We observe that ALL autoregressive matrices are block-diagonal. The authors
assume “lagged independence” between macro and latent factors : f? does not

Granger-cause f/* (and vice versa).

O Lower-right corners of &;, Vj € {2,...,12}, are equal to zero (®},, = 0) —

because of the assumption f* ~ VAR(1).
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[1 the matrix 0 is such that:

0:[93 O2x3

. , Where 0] = Izx3, 07 = 2 lower triangular.
O3x2 92

O The (historical) dynamics of X; = (X¢', X}")' is:

Xt = ,LL—|— CbXt_l —I— Z&“t,ét — (u,?’,O, .. .,O,’U,%”)/.
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0 What f2 = (f2F, f°2) is ?

0,1 _

.~ = 1% Principal Component (71% of explained variance) extracted
from an ‘“inflation group” variables, with “inflation group’” variables

= CPI inflation, PCOM (spot mkt commodity price inflation, PPI inflation.)

0,2 _

< = 1% Principal Component (52% of explained variance) extracted
from a “real activity group’” variables, with *“real activity group’” variables

= HELP, Unemployment, employment growth rate, industrial prod

growth rate.)
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Table 2
Principal component analysis

Prindpal components: inflation

Ist 2nd 3rd

CPI 06343 0.3674 D.GA02
PCOM 04031 0.3080 D.1145
PPI 06597 02015 0.7240
% variance
sxplained 07143 D.8775 1.0000

Prindpal components: real activity

st 2nd ird dth
HELP 0.3204 07365 05300 02719
UE 0.3597 D62R3 06371 D.0612
EMPLOY D.6330 O 1642 02444 07152
P D.E0ED O 1836 0.4327 06403
% variance
sxplained 05202 07946 09518 1.0000

‘We take the three (four) macro variables representing inflation (Teal activity) and normalize them to zero
mean and unit vanance. For each group i, the nomnalized data 2¢ follows the 1 factor model:

Zi= Ot gl
where ( is the factor leading vector, E(f™") = 0, covifi = I, E(zl) =0, and cov(zl) =TI, where I is a
diagonal matrix. The colurms titled ““principal compeonents’ list the prindpal components corresponding
to the first to smallest sigenvalue. The %% varnance swplained for the wth principal componsnt gives the
curnulative proportion of the varance explained by the first up 1o the wth sigenvalus. IP refers to the
growth in industral production, CPI to CPIinflation, POOM to comnmoedity price inflation and PPI to PPI
inflation, HELP refers to the Index of Help Wanted Advertizsing in Newspapers, UE to the unemployment

rate, EMPLOY to the growth in employviment. The sample period is 1252:01 to 2000:12
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O What f = (', %, %) is 7

e Extracted from 3 yields assumed to be perfectly observed (inverting the affine
yield-to-maturity formula): R(t,t+ 1), R(t,t + 12) and R(¢,t + 60).
e They (classically — Litterman and Scheinkman (1991)) act as a:

— LEVEL FACTOR = ff’l — correlation of 0.92 with [R(t,t+ 1)+ R(t,t+12)+

R(t,t + 60)]/3 (called " level transformation”);
— SLOPE FACTOR = f/** — correlation of 0.58 with [R(t,t+60) — R(t,t+1)];

— CURVATURE FACTOR = f/*° — correlation of 0.77 with [R(¢t, t+1)—2R(¢, t+

12) + R(t,t + 60)].
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Short Rate Historical Dynamics

[l The authors assume that:

re = 80 4+ 04, X0 + 8, X1 = 60 + 8, X, with XP1 X",

O If §; is constrained to depend on just contemporaneous values, then we have the
classical Taylor rule given that vy = 5’12X7;u can be interpreted as an ‘“orthogonal

(monetary policy) shock”. It is named “Macro Model".

] If 41 is unconstrained: introducing lagged values, they hope to catch relevant
information to forecast inflation or output. They interpret that specification as

a forward-looking version of the Taylor rule (*“Macro Lag Model").
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No-Arbitrage, Stochastic Discount Factors and Pricing Formulas

[J To develop the affine term structure model, they use the assumption of no-
arbitrage (Harrison and Kreps, 1979) to guarantee the existence of a (positive
and not unique in general) Stochastic Discount Factor M, ;41 (or pricing kernel)
such that the price of any asset V; that does not pay any dividend at ¢t + 1

satisfies:

Vi = EY [My4+1Vig1] -

J If we consider at ¢t a zero-coupon bond maturing at ¢t + 1 we have:

B(t,t+ 1) = E; [My;41] = exp(—r¢) .
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[J More generally, for any payoff Vi4, at t + h, we have :

Vi = Ef[My4nVitn],

Ef[Mygs1 - Mign—144nVign] -

0 Now, it is well known from asset pricing theory that, under the absence of
arbitrage opportunity, there exist equivalent (to P) probability measures under

which asset prices, evaluated with respect to some numeraire Ny, are martingales.

0 A numeraire is defined as a non-dividend-paying price process N = (N¢, t > 0)

with Ng = 1. In other words, N is a stochastic process such that, for every T > t:
Ny = Ef[M;7Nr], and E{[MorNr] =1, where

My = Mysy1-...- Mpr_17.
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[0 The process N* = (N¢Mpy, t > 0) is therefore a P-martingale with unitary value
in ¢t = 0, and if Q is the probability (equivalent to P) defined by the sequence of

conditional densities:

dQy ¢+41
APy 141

d Ny M
Q¢ 141 = NepiMir P [
AP 141 Ny

then, a price process V; is such that V;/N; is a Q-martingale:

N, Niiq
V; = Ef [M;141Viq1] < 2y = E} s M 141 Vi1
Ny 41
] thus:
Vi 5P Ney1iMig41 Vigr | 50 Vit
— = by = Ly
Ny Ni Nita Nit1
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0 If we consider as numeraire the money-market account Ny = exp(rg + ... +
ri—1) = (Aos) "1, where Aoy = Eo(Mo1) -+ E:—1(M;—1+), the associated equivalent
probability Q;;+1 has a one-period conditional density, with respect to P41,

given by :

dQi 41 AgiMiy1  Migya

dPs 141 Aoirr  Ei(Migy1)

and it is called Risk-Neutral probability measure.

[0 This means that the pricing formula V; = Ef[M,;;+1V;+1] can be written:

My 41 P Q
V, = EP L EPIM, 2 1]1Viea | = E9exp(—r)Viai] |
A A y (M 141] Vit = lexp(—r¢) Vigi]

where r; is the (¢,t 4+ 1) short rate, known in ¢
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O In a general (T — t)-period horizon, the conditional (to I;) density of the risk-
neutral probability Q;r with respect to the historical probability P, is given by:

dQ: 1 _ Miygq1-...- M1
dPir Ex(Migy1) ..  Ero1(Mr_17)’

[J More generally, for any payoff Vi4, at t + h, we have :

Vi = E?[GXD(—H — .= 1n—1)Vignl

0 In the case of a ZCB maturing at ¢ + h we have:

B(t,t+h) = E[[My;yp] = Ef[My1B(t+ 1,¢t+ h)]

= EéQ[eXp(—’r‘t — ... ’T’t_|_h_1)] - E;@[eXp(_Tt)B(t —l_ 17t + h)] )
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The Exponential-Affine Stochastic Discount Factor and the Yield Curve

[0 The authors assume the following exponential-affine (in X;) Stochastic Discount
Factor:

1 1
Mt,t—l—l = eXp |—Tt— )\26134_1 — 5)\2)\75] = &Xp [—50 — 5/1Xt — )\26134_1 — 5)\2)\75 ,

where A\f = Ao + M1 X:.

O From B(t,t+ h) = Ef[M;+1B(t+ 1,t 4+ h)] we obtain:

B(t,t + h) = exp [A, + B, X;| , where A, and B, are:
1
Ah_|_1 = Ay, + B;L(,LL — Z)\o) -+ EB;LZZ,Bh — do , where A1 = —dg

B]/’L+1 = B;L(CD — Z)\l) — 51 , where B = —51
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[0 The yield-to-maturity formula (the affine yield curve) is therefore:

A, Bl X
h ho

R(t,t + h) = —% (Bt 4+ 1)] = —

[ Parameters in A\g and Aq1 associated to lagged macro-variables are set equal to

zero. This means that, they consider:

A = Xo+ M [fY,

[0 In addition, they assume the (5 x 5) matrix A1 block-diagonal.
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5.3.4 Estimation Procedure

[0 They estimate three type of models : a) X: = f* (only latent variables); b)

"Macro Model” (no lags); ¢) "Macro Lag Model"”;

[0 They follow a two-step consistent estimation procedure, which is adapted to

forecast with models characterized by several parameters.

[0 They first estimate by OLS the parameters in the VAR(12) dynamics of f?,
and the parameters (dp,d11) in the short rate dynamics (exploiting the fact that

X1X9).
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J Then, keeping fixed that parameters to the estimated values, they estimate the
remaining parameters, namely (g, A1, 012), using the Chen-Scott (1993) inversion

procedure.

[J Let us take a look now to what happens to yield curve factor loadings associated

to latent and macro variables.

[J In other words: do the three latent factors keep their role of level, slope and

curvature ? How macro variables affect the yield curve shape 7
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We observe that, in the "Macro Model”, the three latent factors keep their role

of LEVEL, SLOPE and (almost) CURVATURE.

Inflation and Real Activity factors (at date t) affect yields (at date ¢) almost

uniformly over the maturity spectrum.

What about the "Macro Lag Model” 7
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0 Now, in the "Macro Lag Model”, Inflation and Real Activity (contemporaneous)

factors have little impact on the vield curve for h > 30 months.

0 Thus, "Macro Model” and "Macro Lag Model” imply different impact of macro

factors on the yield curve.

[0 The Forward Looking Taylor Rule (with lags) r, = do 4+ 67X show that lags are

important in determining yield variations

— Contemporaneous shocks have less of an impact on the yields.
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0 Question 1 : are no-arbitrage restrictions and/or macro variables useful for

yields out-of-sample forecasts 7

[0 Question 2 : Are the three latent factors (level, slope, curvature) explained/linked

to the macro variables (inflation and economic activity) 7
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5.3.5 Results

0 Imposing no-arbitrage restrictions improves yields out-of-sample forecasts w.r.t.

a VAR ("Yield only No-arbitrage ATSM" dominates "Yield only VAR model™).

[J These forecasts can be further improved incorporating macro factors into the

Yield only No-arbitrage ATSM (" Macro Model” dominates " Macro Lag Model").
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0 They find that macro factors explain a significant portion (up to 85%) of move-
ments in the short and middle parts of the yield curve, but explain only around

40% of movements at the long end of the yield curve.

[ The effects of inflation shocks are strongest at the short end of the vield curve.

[0 A significant proportion of the "level” and "slope” factors are attributed to
macro factors, particularly to inflation. However, the level effect qualitatively

survives largely intact when macro factors are added to a term structure model.
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Tabile 11
Companiscen of ¥Yislds-Omnly and macro factors

Dependent variabile Independent variables
Inflation Be=al Unobs 1 Unobs 2 Unobs 3 Ad] Re
activity

Pomel A Regressiomns o Macre FRorfovs

Unobs 1 04625 00726 02120

lewel™ (00735 (D.0RE0)

Unobs 2 O.&6707 01890 0 4902

“spread®” (0.0716) (0.0611)

Unobs 3 0.0 93 0.17%4 00343

“curvatur="’ (00629 (0.0714)

FPornel B Regressions on faocfors firom muacro Moded

Unobs 1 01112 D.0307F D.3507 00174 D003 09971
(00054 (0.00SE) (D.0055) (O.00SE) (0.00477

Unobs 2 0.93 64 01026 D013 [y et D027 09921
(00037 (D.0037) (000427 (D.0032) (0.00297

Unobs 3 0.0 227 01232 D 1656 0.14s5s 0.2071 09256
(00262 (D.0260) (D.02R97 0.0241) (002337

FPomel £ Regressions ol foofors From macre ng model

Unobs 1 00520 00207 1.0242 0.003s D.O0OSE 09973
(000459 (0.0040) (000447 (O_0047) (O.0036)

Unobs 2 0. 706D 01132 02955 08700 01306 D.A7T1LS
(00393 (0.0313) (D.0356) (O.0376) (0.0315)

Unobs 3 01112 0.00R1 02053 [EN Eleded: 02119 07470
(00458 (D.0328) (D.0507) (O.0365) (004247

Regressions of the latent factors from the ¥islds-Omily model with ondy latent factors (dependent variables)
onto the macroe factors and latent factors fTom the Macro and Macro Lag model (indspendent variables).
All factors are nommalized, and standard erTors, produced using 3 Newsesy West (1987) lags, arse in
parsntheses. Pansl A lists coefficients fTom a regression of the Yislds- Omily latent factors onto only macro
factors. Pansl B lists cosefficients from a regression of Yislds-Omly latent factors on the macro and latent
factors from the Maco model with only contemporanscus inflation and real activity in the short Tates
squation. Pansl C lists cosefficients fTom a regression of Yislds-Omnly latent factors on the macroe and latent
factors frorn the Macro Lag model with contemporansous inflation and real activity and 11 lags of
inflation and r=al activity in the short Tate eguation.
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5.4 The Autoregressive Gamma of order p Process

5.4.1 The Non-centered Gamma Distribution

[0 We say that the positive random variable Y is Gamma with parameters v > 0

and u >0, i.e. Y ~~(v, ), if and only if its probability density function is:

exp(—y/p) y* 1 I
royw

fy(y; v,p) =
—+ oo
where '(z) = / t* le7tdt, x € C, Re(z) >0,
0
M(z)=T(z—1)(x—1); T(x) =(x—1)! if xz is a positive integer.
[0 v is the shape (or degree of freedom) parameter, u is the scale parameter.
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J We have that:
e E[Y] =vp and V[Y] =vu? (mean and variance);

1 1%
o Flexp(uY)] = (ﬁ) , for u < 1/u (Laplace transform);

Y
o YV ~~v(vu) <— — ~~(v,1) (scaling).
L

[0 We say that the positive random variable Y is Non-centered Gamma with
parameters v >0, 3> 0 and > 0, i.e. Y ~~(v, B, 1), if and only if there exists

a random variable Z ~ P(8) such that:

Y
—|Z~v(v+2,1), v>0, Y Z~yw+Zp), v>0,
H =

Z ~PB), 8>0,u>0, Z ~P(@B), B>0,u>0,

where B is the non-centrality parameter.
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[J Let us remember that a discrete non-negative random variable Z is Poisson with

parameter 8 > 0, i.e. Z ~P(0) (0 > 0), if and only if:

P[Z = 2] = , z€40,1,2,...},

exp(—p) B*
2!
E[Z] =V][Z] =8,

Elexp(uZz)] = exp[B (" — 1)].

O The p.d.f. of Y ~~(v, B, ) is given by:

+ oo
fryivBp) = > flZ==z;v,pn) x fz(z; B)

z=0

+ oo
= 2
z=0

exp(—y/p) y’ =1  exP(=B)B"
M(v+2) prts 2!

H{y>0} .
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(] We have that:

e E[Y]=vu—+Bpand V[Y] =vu? + 2428 (mean and variance);

u p
l—up

o Flexp(uY)] =exp |—vlog(l —up)+ B , foru<1/u

(Laplace transform);

e cxercise!
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5.4.2 The Autoregressive Gamma of order 1 Process

[0 The Autoregressive Gamma of order one [ARG(1)] process {z:} (say) is the exact

discrete-time equivalent of the square-root process introduce in the continuous-

time term structure literature by Cox, Ingersoll and Ross (1985). This (positive

valued) process can be defined as:

Lt41

|Zt—|—1 ~ ’7(7/ _I_ Rt4+1, 1)7 v > Oa

(3)
ziyiloe ~ Ppxe/p), p>0,u>0,p=p3pu

[0 where «v(.) denotes the Gamma distribution, p is the scale parameter, v is the

degree of freedom, p is the correlation (AR) parameter, and z; is the mixing

variable.
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This means that the conditional probability density function f(xiy1 |z p,v,p)

(say) of the ARG(1) process is the following mixture of Gamma densities with

Poisson weights:

i vk—1
e ()
17 p p
x Tt W, UV, p) = — X
f(xig1 |z p,y v, p) 2| NOETS ]

where p>0,u>0,v >0,

H{xt-l-l >0}

(4)

[0 Its conditional Laplace transform has the following exponential-affine (in z;) form

[see Gourieroux and Jasiak (2006) for details; exercise!]:

E |exp(uxi+1) | m] = exp

1l —up

xy —vlog(l —up)| .

(5)
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0 The conditional mean and variance are respectively given by

o E(xiy1|x) = vp+ py,

o and V(xyt1|xt) = vu? + 2upxy.

e cxercise!

[0 Consequently, the process {z:} has the following weak AR(1) representation:

Tip1 = v+ pxe + €441, (6)

0 where {e:} is a conditionally heteroskedastic martingale difference

(= E(eis1|e) = 0), whose conditional variance is V(eiy1|er) = vu? + 2upx:

(exercisel).
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[0 The process is stationary (of second order) if and only if p < 1.

[J In this case, the process {e:} has finite unconditional variance given by:

V(e =vp? + 21/;1?1L (exercise!).
—p

[0 The unconditional mean and variance of {x:} are respectively given by:

o E(xt): Vlu '
1—-0p
2
VL
e and V(xy) = ———.
(1—p)2
e exercisel
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FIGURE 1 — Conditional pdf of ARG(1);
mu = 0.0012, nu = 0.5, y_{t—=1} = 0.02;
rho = 0.6, 0.8, 0.9, 0.99
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FIGURE 2 — Conditional pdf of ARG(1);
rho = 0.8, nu = 0.5, y_{t—=1} = 0.02;
mu = 0.001, 0.005, 0.01, 0.05
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FIGURE 3 — Conditional pdf of ARG(1);
rho = 0.8, mu = 0.001, y_{t—1} = 0.02;
nu = 0.5, 1, 1.5, 2
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5.4.3 The Autoregressive Gamma of order p Process

[0 The Autoregressive Gamma of order p [ARG(p)] process can be defined as:

Lt41

1zt41 ~y(v + z¢41,1), v >0,

(7)
P1Tt + ...+ PpTi_pt1

7

Zt—l—l|ﬂNP( )7 pZ:/Bl,ua 26{17719}

O With the notation X; = (x¢,...,x1—p+1)" and p = (p1,...,pp) we have that the

conditional Laplace transform of the ARG(p) process is (exercise!):

P Xy —vlog(l —up)| , (8)

u
E [exp(uzi4+1) |z = exp [
1 —up
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O and the p.d.f. f(xy1| Xe; p,v, p) (say) is given by:

[ Ti+1
— v+k—1 / k
oo e M xtﬂ) (P Xt) X
M M
X w,v,p) = g — X e H Iy, :

(9)
[J It easily seen that the conditional mean and variance of z,41, given z;, are
respectively given by
o E(zi1|m) =vp+p'Xy
o and V(zi41|z) = vp® + 2up'X;.

e cxercise!
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This means that, the ARG(p) process {x:} has the weak AR(p) representation:
Ti+1 = v+ o' Xy + §t+1, (10)

where {&:} is a conditionally heteroskedastic martingale difference, whose condi-

tional variance is V(&1 &) = vp? + 2up’ X, (exercise!).

The process {x:} is stationary if and only if p'e <1 [where e = (1,...,1) € RP].

In this case, {&} has finite unconditional variance given by:

/

pe

V(&) =vp+ 21/u21 (exercisel!).

‘e

v

The unconditional mean of {x;} is given by E(x;) = 1 (exercisel).

‘e
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5.5

5.5.

Univariate ARG(1) Factor-Based Term Structure Models

1 The Historical Dynamics

We consider our discrete-time economy between dates O and T'.

x: 1S our factor or a state vector, and it may be observable, partially observable

or unobservable by the econometrician.

Gaussian VAR(p) ATSMs do not (theoretically) guarantee that the yield-to-
maturity formula generate positive yields for any date ¢, residual maturity h,

any parameter values and realization of the factor x:.
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[J We are going to see now that, if assume that the factor x; follows an Autore-

gressive Gamma of order p Process (with a well specified SDF), then :

— the term structure of interest rates will be affine in the factor z; (or X; if

p>1).

— any model implied yield-to-maturity will be strictly positive.

[0 For ease of exposition (and for reason of time) we will consider only the case of

a scalar and latent factor.

[J In this section we consider p = 1 and then, in the next one, we will assume p > 1.
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Let us assume that the scalar latent factor x; has a dynamics, under the historical

probability P, described by an ARG(1) process.

This means that, under P, the Laplace transform of z;41, conditionally to z;, is

given by:

E [exp(uxt+1) |ﬂ] = exp x: —vlog(l —up)| ,

1l —up
= expla(y; p, ) T + b(u; v, pn)] -

We have seen in the previous sections that this process has the following weak

positive AR(1) representation:

Tip1 = Vi + pTr + €441,
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O where {e:} is a conditionally heteroskedastic martingale difference:
- = E(5t+1 |5t) =0

— whose conditional variance is V (giy1 | er) = vu? + 2upxy,

[J and whose conditional Laplace transform is given by:

E [exp(u6t+1) |§} = FE {exp [u(:cH_l — VU — pTt) |ﬂ” :
= exp[a(u; p, p) zt + b(u; v, u) —u (v + pze)]
= exp[(a(y; p,p) —up) xe + b(u; v, pu) —uvp] .
[0 This result is going to be useful in the construction of our one-period exponential-

affine SDF M 41.
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5.5.2 The Stochastic Discount Factor

[J The one-period SDF M; ;41 is assumed to be given by:
Mijr1 = exp[—8—oaxi+ MNieiq1]

x exp[—a (Mg o,p) xe —b(Myv,p) +Te(vip+ pa)]

[J with stochastic risk-correction coefficient given by 'y = ~, + v x«.

(] It is built in such a way that:

d M, M, M
_ dQu1 L+l s a density : L+l S 0 and E [ b+l | — 9.

dPiiv1 Ei[M; 1] Ey[M; 441] Ei[ M t41]

— the no-arbitrage restriction is explicitly satisfied : Ej[M;4+1] = exp(—rs) if
and only if r, = 8+ axs.
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(1] A useful Lemma - Let us consider the functions:

puU

a(u; p, u) = . and b(u;v,u) = —vlog(1l —up);

then, we have:

(] Lemma :
a(u+ g; p, ) — alg; p, p) = alu; p*, u*)
b(u+ g;v,u) — b(g; v, n) = b(u; v, u*)

with p* = —F = _ P

) /'L - 9
(1 —gp)? 1—gp
[Proof : exercise] and we will consider the case g = ;.
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5.5.3 The Affine Positive Term Structure of Interest Rates

[0 The price at date t of the zero-coupon bond with time to maturity h is :

B(t,t + h) = exp(cpx: +dy), h>1,

[0 where ¢;, and d; satisfies, for h > 1, the recursive equations:

(o, = —a4[alch-1+ T pp) —a(lsp,p)]

= —a+a(cp-1;p50%),

dp, = =B+ [blch-1+Tyv,p) =0T v, w)] 4+ dr-a
\ = —B+blch-1,v,pu") +dp_1,
O with initial conditions ¢g = 0,dp = 0 (or ¢1 = —a,d1 = —f8). If x; = r;, then

cit = —1 and d; = 0.
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The (continuously compounded) affine term structure of interest rates is:

1 d
R(t,t+h)=—E|ogB(t,t+h)=—%"xt—f, h>1,

positivity of the yields : Since »» = R(t,t + 1) = 8 + ax, and since z; is a
positive process, the short rate process will be positive as soon as 8 and « are

nonnegative.

The positivity of r, implies that of R(¢,t+ h), at any date ¢t and time to maturity

h, because R(t,h) = —1log EP [exp(—ry — ... —ripp_1)].

This is the discrete-time equivalent of the (continuous-time affine) Cox-Ingersoll-

Ross (1985) model.
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5.5.4 The Positive Risk-Neutral Dynamics

[ The risk-neutral Laplace transform of z,41, conditionally to zy, is given by:

My 441
ER[exp(uzi+1)] = E; : exp(uzi41)
¢ Et(Mt,t—I-l)

= exp{[a(u—+ T p,pn) —a(lt; p, )] e+ [b(u+ Ty v, 1) — b(Ct; v, 1))}

= exp[a(u; p*, u*) x¢ + b(u; v, u*)]

[0 Under the risk-neutral probability Q, x;4+1 is a positive weak AR(1) process of the

following type:

Ti41 = VR T p T+ Mt
[ with p* = P > 0 and p* = I > 0, and where n;41 is such that
(1 -l p)? 1-—Tip

E(Met1lm) = 0 and V(nepr | m) = v(p*)? + 2u*p*a:.
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5.6 Univariate ARG(p) Factor-Based Term Structure Models

5.6.1 The Historical Dynamics

[J Let us assume that the scalar latent factor x; has a dynamics, under the historical

probability P, described by an ARG(p) process.

[0 This means that, under P, the Laplace transform of z,41, conditionally to zi, is

given by:

(7

E [exp(uxH_l) |ﬁ] = exp (praxe+ ...+ ppxi—pt1) —viog(l —up)| ,

1 —up

U

= exp p' Xy —vlog(l —up)| ,

1 —up
= exp[a(u; p, ) ' Xi + b(u; v, p)] -
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[J We seen in the previous sections that this process has the following weak positive

AR(p) representation:

i1 =vp+ ' Xe + €141,
0 where {e:} is a conditionally heteroskedastic martingale difference:
— = E(et41|er) =0
— whose conditional variance is V(eiy1|et) = vu? + 2up' Xq,

0 and whose conditional Laplace transform is given by:

Blexo(ueiss)|e] = B {exp [uCeiss —vu— o X0 21}
= exp [a(y; p, ) Xi + b(u; v, ) —u(vp+p X1,

= exp[(a(y; p,p) —up)' X + b(u; v, p) —uvp] .
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5.6.2 The Stochastic Discount Factor

[J The one-period SDF M; ;41 is assumed to be given by:
Mii41 = exp [—8 — ' Xt + Tt e441]

x exp [—a(Fyp,p) Xe—b(Tiv,p) +Te(vp+ o X))

0 with stochastic risk-correction coefficient given by 'y = ~, + v’ X;.

] It is built in such a way that:

d M, M, M
_ dQu1 L+l s a density : L+l S 0 and E [ b+l | — 9.

dPiiv1 Ei[M; 1] Ey[M; 441] Ei[ M t41]

— the no-arbitrage restriction is explicitly satisfied : Ej[M;4+1] = exp(—rs) if
and only if rp = B + Oé/Xt.
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] A *“generalization” of the Lemma - Let us consider the functions:

U
1—wu

a(u; p, ) = p and b(u;v,u) = —vlog(l —up);

then, we have:

(] Lemma :
a(u+ g; p, ) — alg; p, p) = alu; p*, u*)

b(u+ g;v,pn) —b(g; v, ) = b(u; v, u*)

1 " p
p, = ,
(1 —gp)? 1—gp

and we will consider the case g =1T.

with p* =
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5.6.3 The Affine Positive Term Structure of Interest Rates

[J The price at date t of the zero-coupon bond with time to maturity h is :

B(t,t+h) = exp(c, X; +dp), h>1,

[0 where ¢;, and d; satisfies, for h > 1, the recursive equations:

(o = —a+[aleip1+Tepp) —a(ls pp)] + En1

= —a+talcip1;p5p")+Ch1,

dpn = —B+ [blcip1+Tev,p)—b(Tsv,pu)] + dya
\ = —B+blcip-1;v,1%) +dr1,
O where ¢,-1 = (c2h-1,---5¢ph-1,0), and with initial conditions cg = 0,do = 0 (or

c1 = —a,dy = —8). If &x =4, then ¢; = —e; and di1 = 0.
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The affine positive term structure of interest rates is given by:

1 / d
R(t,t—|—h)=—ElogB(t,t—|—h):—c—;Xt—Zh, h>1,

positivity of the yields : Since »» = R(t,t+ 1) = 8+ o’X;, and since z; is a
positive process, the short rate process will be positive as soon as 8 and « are

nonnegative.

The positivity of r, implies that of R(¢,t+ h), at any date ¢t and time to maturity

h, because R(t,t + h) = —+log B [exp(—rt — ... —repn_1)].

This is the discrete-time multiple lags generalization of the (continuous-time

affine) Cox-Ingersoll-Ross (1985) model.
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5.6.4 The Positive Risk-Neutral Dynamics

[ The risk-neutral Laplace transform of z,41, conditionally to zy, is given by:

M
B tt41

exp(uxit1)
Ey(Mi41)

ER[exp(uzit1)] =

= exp{la(u+ T p,pu) —a(T; p, )] Xe+ [b(u+ Ty v, p) — b(Te v, 1))}
= exp [a(u,; p*, u*)" Xi + b(u; v, u*)]

[0 Under the risk-neutral probability Q, ;41 is a positive weak AR(1) process of the

following type:

Tir1 = vu'+p "Xy g,
. 7’ .
(] with p* = >0 and uy* = —— > 0, and where IS such that
g (1—rtﬂ)2p 3 1-Tip s

E(Me+1]m) = 0 and V(nppr | ) = v(p*)? + 2u*p* X,
129



