Fixed Income and Credit Risk

Lecture 5

Professor Assistant Program
Fulvio Pegoraro Roberto Marfè MSc. Finance

Fall Semester 2012

UNIL | Université de Lausanne

Fixed Income and Credit Risk

Lecture 5 - Part I

Empirical Analysis of Gaussian

Affine Term Structure Models

Outline of Lecture 5 - Part I

5.1 An Empirical Analysis of Gaussian ATSMs
5.1.1 Description of the Data
5.1.2 Estimated Models
5.1.3 Estimation Method
5.1.4 Results for the $\operatorname{AR}(p)$ Factor-Based Term Structure Models
5.1.5 Results for the bivariate $\operatorname{VAR}(p)$ Factor-Based Term Structure Models
5.1.6 In-sample Fit of the Yield Curve
5.1.7 Do these models explain the Violation of the EHT ?
5.2 Alternative Estimation Procedures for Gaussian ATSMs
5.2.1 $M L E$ through the "Inversion Procedure"
5.2.2 MLE through Kalman Filter Recursions
5.2.3 The Adrian, Crump and Moench (2012, JFE) Approach

5.3 Ang and Piazzesi (2003, JME)

5.3.1 Purpose of the paper

5.3.2 Main results
5.3.3 Setup
5.3.4 Estimation Procedure
5.3.5 Results

5.1 An Empirical Analysis of Gaussian $A T S M s$

5.1.1 Description of the Data

The CRSP data set on the U. S. term structure of interest rates (treasury zerocoupon bond yields), that we consider in the following application, covers the period from June 1964 to December 1995 and contains 379 monthly observations for each of the nine maturities : 1, 3, 6 and 9 months and 1, 2, 3, 4 and 5 years.\square Summary statistics about the above mentioned (annualized) yields are presented in Table 1 :

Table 1: Summary Statistics on U. S. Monthly Yields from June 1964 to December 1995.
$\operatorname{ACF}(k)$ indicates the empirical autocorrelation between yields $R(t, h)$ and $R(t-k, h)$, with h and k expressed on a monthly basis.

Maturity	$1-\mathrm{m}$	3-m	$6-\mathrm{m}$	$9-\mathrm{m}$	$1-\mathrm{yr}$	$2-\mathrm{yr}$	$3-\mathrm{yr}$	$4-\mathrm{yr}$	$5-\mathrm{yr}$
Mean	0.0645	0.0672	0.0694	0.0709	0.0713	0.0734	0.0750	0.0762	0.0769
Std. Dev.	0.0265	0.0271	0.0270	0.0269	0.0260	0.0252	0.0244	0.0240	0.0237
Skewness	1.2111	1.2118	1.1518	1.1013	1.0307	0.9778	0.9615	0.9263	0.8791
Kurtosis	4.5902	4.5237	4.3147	4.1605	3.9098	3.6612	3.5897	3.5063	3.3531
Minimum	0.0265	0.0277	0.0287	0.0299	0.0311	0.0366	0.0387	0.0397	0.0398
Maximum	0.1640	0.1612	0.1655	0.1644	0.1581	0.1564	0.1556	0.1582	0.1500
ACF(1)	0.9587	0.9731	0.9747	0.9745	0.9727	0.9780	0.9797	0.9802	0.9822
ACF(5)	0.8288	0.8531	0.8579	0.8588	0.8604	0.8783	0.8915	0.8986	0.9053
ACF(10)	0.7278	0.7590	0.7691	0.7699	0.7683	0.7885	0.8021	0.8075	0.8212
ACF(20)	0.4303	0.4631	0.4880	0.4996	0.5156	0.5742	0.6051	0.6193	0.6431
ACF(30)	0.2548	0.2682	0.3016	0.3213	0.3518	0.4358	0.4725	0.4994	0.5187
ACF(40)	0.1362	0.1415	0.1677	0.1853	0.2160	0.3056	0.3427	0.3780	0.3961

- upward sloping
- and the yields with larger standard deviation, positive skewness and kurtosis are those with shorter maturities.
- Moreover, yields are highly autocorrelated with a persistence which is increasing with the time to maturity.

5.1.2 Estimated Models

\square In the present empirical analysis we follow an endogenous approach, given that it gives several important advantages coming from the observations we have about the factor, that is, the short rate in the scalar case, or yields at different maturities in the multivariate framework.
\square First we are able to detect stylized facts giving us the possibility to justify the $\mathrm{AR}(p)$ model we propose for the historical dynamics of $\left(x_{t}\right)$: indeed, a large empirical literature on bond yields show that interest rates have an historical multi-lag dynamics [see, among the others, Hamilton (1989), Christiansen and Lund (2003), Cochrane and Piazzesi (2005)].Second, observations about the Gaussian-distributed factor lead to an exact maximum likelihood estimation of historical parameters: in this way, we are able to test hypotheses using likelihood ratio statistics, and rank the models in terms of various information criteria.Finally, the difference between directly observed and estimated factor values determine model residuals that can be used to derive various diagnostic criteria.

5.1.3 Estimation Method

\square The methodology we follow to estimate the parameters of the endogenous MultiLag term structure models is based on a consistent two-step procedure.
\square In the first step, thanks to observations on the K-dimensional endogenous factor $\left(x_{t}\right)$, we estimate the $[K(1+K p)+(K(K+1) / 2)]$-dimensional vector of parameters $\Theta_{\mathbb{P}}=\left[\nu^{\prime}, \operatorname{vec}(\Phi)^{\prime}, \operatorname{vech}\left(\Sigma \Sigma^{\prime}\right)^{\prime}\right]^{\prime}$, characterizing the historical dynamics $\left(x_{t}\right)$, by Maximum Likelihood (ML).

In the case of a $\operatorname{Gaussian} \operatorname{VAR}(p)$ process, the ML estimator coincides with the OLS estimator.

OLS Estimation of a Gaussian $\operatorname{VAR}(p)$ process with observable factor

\square Notation: $\mathbf{X}:=\left(x_{1}, \ldots, x_{T}\right)$ is (K, T) matrix of observations; $B:=\left(\nu, \Phi_{1}, \ldots, \Phi_{p}\right)$
is ($K, K p+1$) matrix of parameters;
$\square Z_{t}:=\left[\begin{array}{c}1 \\ x_{t} \\ x_{t-1} \\ \vdots \\ x_{t-p+1}\end{array}\right], \quad \mathbf{Z}:=\left(Z_{0}, \ldots, Z_{T-1}\right)$ is $((K p+1), T)$ matrix.$U:=\left(\varepsilon_{1}, \ldots, \varepsilon_{T}\right)$ is (K, T) matrix. We, thus, can write $\mathbf{X}=B \mathbf{Z}+U$.$\mathbf{x}:=\operatorname{vec}(X)$ is $(T K, 1)$ vector, $\beta:=\operatorname{vec}(B)$ is $\left(K^{2} p+K, 1\right)$ vector.
\square OLS estimator : $\operatorname{vec}(\widehat{B})=\widehat{\beta}=\operatorname{vec}\left(\mathbf{X ~ Z}^{\prime}\left(\mathbf{Z} \mathbf{Z}^{\prime}\right)^{-1}\right)$;
\square Given that $\Omega=E\left(\varepsilon_{t} \varepsilon_{t}^{\prime}\right)$, we estimate this matrix by:

$$
\widehat{\Omega}=\frac{1}{T} \sum_{t=1}^{T} \widehat{\varepsilon_{t}} \widehat{\varepsilon}_{t}^{\prime}=\frac{1}{T} \widehat{U} \widehat{U}^{\prime}=\frac{1}{T}(\mathbf{X}-\widehat{B} \mathbf{Z})(\mathbf{X}-\widehat{B} \mathbf{Z})=\frac{1}{T} \mathbf{X}\left(I_{T}-\mathbf{Z}^{\prime}\left(\mathbf{Z} \mathbf{Z}^{\prime}\right)^{-1} \mathbf{Z}\right) \mathbf{X}^{\prime}
$$

\square How do we select the number of lags p (VAR order selection) in the $\operatorname{VAR}(p)$ model ?
a) minimizing the Forecast Mean Square Error we obtain a criterion called Final Prediction Error (FPE):

$$
F P E(p)=\left[\frac{T+K p+1}{T-K p-1}\right]^{K} \operatorname{det}(\widehat{\Omega}(p))
$$

b) Akaike's Information Criterion (AIC): $A I C(p)=\ln \operatorname{det}(\widehat{\Omega}(p))+\frac{2 p K^{2}}{T}$;
c) Hannan-Quinn Criterion (HQ): $H Q(p)=\ln \operatorname{det}(\widehat{\Omega}(p))+\frac{2 \ln \ln T}{T} p K^{2}$;
d) Schwarz Information Criterion (SC): $S C(p)=\ln \operatorname{det}(\widehat{\Omega}(p))+\frac{\ln T}{T} p K^{2}$;

- the selected AR order p is the one minimizing the criterion.
- Small sample comparisons: $p(S C) \leq p(A I C)$ if $T \geq 8 ; p(S C) \leq p(H Q)$ for all T;

$$
p(H Q) \leq p(A I C) \text { if } T \geq 16
$$

\square In the second step, using observations on yields with maturities different from those used in the first step and for a given estimates of vech $\left(\Sigma \Sigma^{\prime}\right)$, we estimate the $[K(1+K p)]$-dimensional vector of parameters $\Theta_{\mathbb{Q}}=\left[\left(\nu^{*}\right)^{\prime}, \operatorname{vec}\left(\Phi^{*}\right)^{\prime}\right]^{\prime}$, characterizing the risk-neutral dynamics of $\left(x_{t}\right)$, by minimizing the sum of squared fitting errors between the observed and theoretical yields.

In other words, in this second step and for a given $\widehat{\Theta}_{\mathbb{P}}$, we estimate $\left(\gamma_{0}, \widetilde{\Gamma}\right)$.More precisely, in the scalar case, we estimate $\Theta_{\mathbb{Q}}$ by nonlinear lest squares (NLLS), while, in the multivariate case, these parameters are estimated by Constrained NLLS.
\square The constraints are imposed to satisfy internal consistency conditions on (C_{h}, D_{h}) implied by the absence of arbitrage opportunity principle [see Lecture 4 and next slides].
\square Given the complete set of 9 maturities of our data base, and given a number m of yields used to estimate the vector of historical parameters $\Theta_{\mathbb{P}}$, we denote by H_{m}^{*} the set of remaining maturities used to estimate the vector of risk-neutral parameters $\Theta_{\mathbb{Q}}$.

In the $\operatorname{AR}(p)$ Factor-Based case, x_{t} is the one-month yield to maturity $R(t, t+$ $1 m)=r_{t}$ expressed at a monthly frequency.
\square In the bivariate $\operatorname{VAR}(p)$ Factor-Based case the factor is given by :

$$
x_{t}=[R(t, t+1 m), R(t, t+60 m)-R(t, t+1 m)]^{\prime}
$$

where $[R(t, t+60 m)-R(t, t+1 m)]$ is the spread at date t between the five-year and one-month yield to maturity, expressed at a monthly frequency.
\square The NLLS estimator for the $\operatorname{AR}(p)$ case, is determined by :

$$
\left\{\begin{array}{l}
\widehat{\Theta}_{\mathbb{Q}}=\operatorname{Arg} \min _{\Theta_{\mathbb{Q}}} S^{2}\left(\Theta_{\mathbb{Q}}\right) \tag{1}\\
S^{2}\left(\Theta_{\mathbb{Q}}\right)=\sum_{t=p}^{T} \sum_{h \in H_{1}^{*}}\left[R^{o}(t, t+h)-R(t, t+h)\right]^{2}
\end{array}\right.
$$

given the set H_{1}^{*} of maturities used to estimate the risk-neutral parameters; $R^{o}(t, t+h)$ is the observed yield, while $R(t, t+h)$ is the model-implied one.
\square The constrained NLLS estimator, in our bivariate model specification, is given by :

$$
\left\{\begin{array}{l}
\widehat{\Theta}_{\mathbb{Q}}=\operatorname{Arg} \min _{\Theta_{\mathbb{Q}}} S^{2}\left(\Theta_{\mathbb{Q}}\right) \tag{2}\\
S^{2}\left(\Theta_{\mathbb{Q}}\right)=\sum_{t=p}^{T} \sum_{h \in H_{2}^{*}}\left[R^{o}(t, t+h)-R(t, t+h)\right]^{2}, \\
\text { s. t. } \sum_{t=p}^{T}\left[R^{o}(t, t+60 m)-R(t, t+60 m)\right]^{2}=0,
\end{array}\right.
$$

\square The constraint in the minimization program (2) guarantees the absence of arbitrage opportunity on the five-year yield to maturity.

5.1.4 Results for the $\mathbf{A R}(p)$ Factor-Based Term Structure Models

\square The maximum value of the mean Log-Likelihood and the values of the estimated vector of parameters $\Theta_{\mathbb{P}}=\left(\nu, \varphi_{1}, \ldots, \varphi_{p}, \sigma\right)^{\prime}$ of the $\operatorname{AR}(p)$ Factor-Based Term Structure models, for $p \in\{1, \ldots, 6\}$, are presented in Tables 2 and 3 [the t-values are given in parenthesis].
\square We denote with mlog L the mean log-Likelihood of the $\operatorname{AR}(p)$ model : mlog $L=$ $\log L\left(\Theta_{\mathbb{P}} \mid x_{1}, \ldots, x_{T-p}\right) /(T-p)$.
\square The Akaike Information Criterion (AIC) (for ranking among models) is given by $2 m \log L-(2 k /(T-p))$, with k denoting the dimension of $\Theta_{\mathbb{P}}$.

Table 2 : $\operatorname{AR}(p)$ Factor-Based Term Structure models. Maximum value of the mean
Log-Likelihood, AIC and parameter estimates of ν and $\sigma .\left({ }^{* *}\right)$ denotes a parameter significant at 0.05; (*) denotes a parameter significant at 0.1.

	$\operatorname{AR}(1)$	$\operatorname{AR}(2)$	$\operatorname{AR}(3)$	$\operatorname{AR}(4)$	$\operatorname{AR}(5)$	$\operatorname{AR}(6)$
$m \log L$	5.95657	5.95868	5.96082	5.96134	5.97224	5.97092
AIC	11.8973	11.8961	11.8950	11.8907	11.9071	11.8990
ν	0.00023	0.00021	0.00023	0.00021	0.00019	0.00019
	$[2.6725]^{* *}$	$[2.4822]^{* *}$	$[2.6598]^{* *}$	$[2.4761]^{* *}$	$[2.1571]^{* *}$	$[2.1262] * *$
σ^{2}	0.00000039	0.00000039	0.00000039	0.00000039	0.00000038	0.00000038
	$[13.7483]^{* *}$	$[13.7301]^{* *}$	$[13.7118]^{* *}$	$[13.6937]^{* *}$	$[13.6754]^{* *}$	$[13.6571]^{* *}$

Table 3 : $\operatorname{AR}(p)$ Factor-Based Term Structure models Parameter estimates of $\left(\varphi_{1}, \ldots, \varphi_{p}\right)$.
$\left({ }^{* *}\right)$ denotes a parameter significant at $0.05 ;\left({ }^{*}\right)$ denotes a parameter significant at 0.1.

	AR(1)	AR(2)	AR(3)	AR(4)	AR(5)	AR(6)
φ_{1}	$\begin{aligned} & 0.9580^{* *} \\ & {[65.5620]} \end{aligned}$	$\begin{aligned} & 0.8798^{* *} \\ & {[17.2393]} \end{aligned}$	$\begin{aligned} & 0.88611^{* *} \\ & {[17.1525]} \end{aligned}$	$\begin{aligned} & 0.8912^{* *} \\ & {[17.1688]} \end{aligned}$	$\begin{aligned} & 0.8814^{* *} \\ & {[17.1628]} \end{aligned}$	$\begin{aligned} & 0.8806^{* *} \\ & {[16.9714]} \end{aligned}$
φ_{2}		$\begin{gathered} 0.0811 \\ {[1.5938]} \end{gathered}$	$\begin{aligned} & 0.1547^{* *} \\ & {[2.2869]} \end{aligned}$	$\begin{aligned} & 0.14566^{* *} \\ & {[2.0843]} \end{aligned}$	$\begin{aligned} & 0.1672^{* *} \\ & {[2.4260]} \end{aligned}$	$\begin{aligned} & 0.16755^{* *} \\ & {[2.3885]} \end{aligned}$
φ_{3}			$\begin{gathered} -0.0829{ }^{*} \\ {[-1.6459]} \end{gathered}$	$\begin{gathered} -0.1372 * \\ {[-1.9204]} \end{gathered}$	$\begin{gathered} -0.15955^{* *} \\ {[-2.3048]} \end{gathered}$	$\begin{gathered} -0.1586^{* *} \\ {[-2.2623]} \end{gathered}$
φ_{4}				$\begin{gathered} 0.0608 \\ {[1.1455]} \end{gathered}$	$\begin{gathered} -0.0790 \\ {[-1.1788]} \end{gathered}$	$\begin{gathered} -0.0798 \\ {[-1.1240]} \end{gathered}$
φ_{5}					$\begin{aligned} & 0.1557^{* *} \\ & {[3.1048]} \end{aligned}$	$\begin{gathered} 0.15100^{* *} \\ {[2.4443]} \end{gathered}$
$\varphi 6$						$\begin{gathered} 0.0053 \\ {[0.1232]} \end{gathered}$

\square The minimum value of the mean NLLS criterion $\left[S^{2}\left(\widehat{\Theta}_{\mathbb{Q}}\right) / T^{*}\right.$] and the values of the estimated vector of risk-neutral parameters $\Theta_{\mathbb{Q}}=\left(\nu^{*}, \varphi_{1}^{*}, \ldots, \varphi_{p}^{*}\right)$, with $p \in$ $\{1, \ldots, 6\}$, are presented in Tables 5 and 6 [the t-values are given in parenthesis]. We also rank the models in terms of the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE).

Table 4: $\operatorname{AR}(p)$ Factor-Based Term Structure models. Minimum value of the mean NLLS criterion, RMSE, MAE and parameter estimates of ν^{*}. $\left({ }^{* *}\right)$ denotes a parameter significant at 0.05; (*) denotes a parameter significant at 0.1.

	$\operatorname{AR}(1)$	$\operatorname{AR}(2)$	$\operatorname{AR}(3)$	$\operatorname{AR}(4)$	$\operatorname{AR}(5)$	$\operatorname{AR}(6)$
$S^{2}\left(\widehat{\Theta}_{\mathbb{Q}}\right) / T^{*}$	0.00000054	0.00000051	0.00000050	0.00000048	0.00000047	0.00000046
RMSE	0.000736	0.000716	0.000709	0.000696	0.000687	0.000679
MAE	0.000530	0.000526	0.000528	0.000524	0.000517	0.000509
ν^{*}	0.000110	0.000151	0.000152	0.000148	0.000148	0.000152
	$[33.2526]^{* *}$	$[22.6031]^{* *}$	$[22.9266]^{* *}$	$[22.9794]^{* *}$	$[22.7051] * *$	$[22.4479]^{* *}$

Table 5: $\operatorname{AR}(p)$ Factor-Based Term Structure models. Parameter estimates of $\left(\varphi_{1}^{*}, \ldots, \varphi_{p}^{*}\right)$.
$\left({ }^{* *}\right)$ denotes a parameter significant at $0.05 ;\left({ }^{*}\right)$ denotes a parameter significant at 0.1 .

	AR(1)	AR(2)	AR(3)	AR(4)	AR(5)	AR(6)
φ_{1}^{*}	$\begin{gathered} 0.9899 \text { ** } \\ {[1877]} \end{gathered}$	$\begin{gathered} 0.5076 \text { ** } \\ {[9.6003]} \end{gathered}$	$\begin{aligned} & 0.7333^{* *} \\ & {[14.2703]} \end{aligned}$	$\begin{aligned} & 0.7758 \text { ** } \\ & {[15.4922]} \end{aligned}$	$\begin{aligned} & 0.7382^{* *} \\ & {[14.2057]} \end{aligned}$	$\begin{aligned} & 0.7037^{* *} \\ & {[13.3209]} \end{aligned}$
φ_{2}^{*}		$\begin{gathered} 0.47888^{* *} \\ {[9.1313]} \end{gathered}$	$\begin{gathered} -0.0299 \\ {[-0.4132]} \end{gathered}$	$\begin{aligned} & 0.2291 \text { ** } \\ & {[2.8931]} \end{aligned}$	$\begin{aligned} & 0.2947^{* *} \\ & {[3.6124]} \end{aligned}$	$\begin{aligned} & 0.29988^{* *} \\ & {[3.6802]} \end{aligned}$
φ_{3}^{*}			$\begin{gathered} 0.2832^{* *} \\ {[7.5221]} \end{gathered}$	$\begin{gathered} -0.3860 * * \\ {[-5.3681]} \end{gathered}$	$\begin{gathered} -0.16000^{* *} \\ {[-2.0834]} \end{gathered}$	$\begin{gathered} -0.1069 \\ {[-1.3898]} \end{gathered}$
φ_{4}^{*}				$\begin{aligned} & 0.36855^{* *} \\ & {[10.2233]} \end{aligned}$	$\begin{gathered} -0.1977^{* *} \\ {[-2.6864]} \end{gathered}$	$\begin{gathered} 0.0123 \\ {[0.1609]} \end{gathered}$
φ_{5}^{*}					$\begin{aligned} & 0.3126^{* *} \\ & {[8.4180]} \end{aligned}$	$\begin{gathered} -0.2173^{* *} \\ {[-2.9386]} \end{gathered}$
φ_{6}^{*}						$\begin{gathered} 0.2961^{* *} \\ {[7.7697]} \end{gathered}$

5.1.5 Results for the bivariate $\operatorname{VAR}(p)$ Factor-Based Term Structure Models

\square As in the scalar case, we present the maximum value of the mean Log-Likelihood and the values of the estimated vector of parameters $\Theta_{\mathbb{P}}=\left[\nu^{\prime}, \operatorname{vec}(\Phi)^{\prime}, \operatorname{vech}\left(\Sigma \Sigma^{\prime}\right)^{\prime}\right]^{\prime}$ of the bivariate $\operatorname{VAR}(p)$ Factor-Based Term Structure models, for an AR order $p=1$ and $p=2$.
\square These results are presented in Tables 6 and 7. We have also estimated the historical parameters of the above mentioned bivariate $\operatorname{VAR}(p)$ model, for p larger than 2, but the AIC criterion has indicated the first two AR orders as the preferred ones.

Table 6: $\operatorname{VAR}(p)$ Factor-Based Term Structure models. (**) denotes a parameter significant at 0.05; (*) denotes a parameter significant at 0.1.

	$\operatorname{VAR}(1)$	VAR(2)
$m \log L$	12.6403	12.6837
AIC	25.2330	25.2984
ν_{1}	$\begin{aligned} & 0.000065 \\ & {[0.5856]} \end{aligned}$	$\begin{aligned} & 0.000132 \\ & {[1.2262]} \end{aligned}$
ν_{2}	$\begin{aligned} & 0.000080 \\ & {[0.8157]} \end{aligned}$	$\begin{aligned} & 0.000026 \\ & {[0.2701]} \end{aligned}$
σ_{1}^{2}	$\begin{aligned} & 0.00000039 \\ & {[5.94750] * *} \end{aligned}$	$\begin{aligned} & 0.00000036 \\ & {[6.02614]^{* *}} \end{aligned}$
σ_{21}	$\begin{gathered} -0.00000028 \\ {[-6.0995]^{* *}} \end{gathered}$	$\begin{gathered} -0.00000026 \\ {[-6.2100]^{* *}} \end{gathered}$
σ_{2}^{2}	$\begin{aligned} & 0.00000030 \\ & [7.6713]]^{* *} \end{aligned}$	$\begin{aligned} & 0.00000028 \\ & {[8.0731]{ }^{* *}} \end{aligned}$

Table 7 : VAR(1) and $\operatorname{VAR(2)~Factor-Based~Term~Structure~models.~Parameter~estimates~of~}$ $\left(\varphi_{1}, \varphi_{2}\right) .\left({ }^{* *}\right)$ denotes a parameter significant at $0.05 ;\left({ }^{*}\right)$ denotes a parameter significant at 0.1.

	$\operatorname{VAR}(1)$		$\operatorname{VAR}(2)$	
Φ_{1}	0.9742	0.0719	1.3318	0.6207
	$[59.8835]^{* *}$	$[2.2174]^{* *}$	$[15.0111]^{* *}$	$[7.0095]^{* *}$
	0.0091	0.8769	-0.2744	0.4353
	$[0.6388]$	$[30.7835]^{* *}$	$[-3.4988]^{* *}$	$[5.5601]^{* *}$
Φ_{2}			-0.3648	-0.5762
			$[-3.6117]^{* *}$	$[-5.8201]^{* *}$
			0.2893	0.4642

\square If we consider the parameter estimates of Tables 6 and 7 , we observe that the joint historical dynamics of short rate and spread is not Markovian of order one, given that, in the $\operatorname{VAR}(2)$ specification, the parameters in the second autoregressive matrix φ_{2} are significantly different from zero.
\square Moreover, the AIC indicates this model as the preferred one. Table 6 shows also that the constant term $\left(\nu_{1}, \nu_{2}\right)^{\prime}$ is not significative for both AR orders.
\square We present the minimum value of the mean NLLS criterion $\left[S^{2}\left(\widehat{\Theta}_{\mathbb{Q}}\right) / T^{*}\right]$ and the values of the estimated vector of risk-neutral parameters $\Theta_{\mathbb{Q}}=\left[\left(\nu^{*}\right)^{\prime}, v e c\left(\Phi^{*}\right)^{\prime}\right]^{\prime}$, for the bivariate $\operatorname{VAR}(1)$ and $\operatorname{VAR}(2)$ Factor-Based Term Structure models, in Tables 8 and 9.

Table 8 : $\operatorname{VAR}(p)$ Factor-Based Term Structure models. Minimum value of the mean NLLS criterion, RMSE, MAE and parameter estimates of $\left(\nu_{1}^{*}, \nu_{2}^{*}\right) .\left({ }^{* *}\right)$ denotes a parameter significant at 0.05; (*) denotes a parameter significant at 0.1.

	$\operatorname{VAR}(1)$	$\operatorname{VAR}(2)$
$S^{2}\left(\widehat{\theta}_{\mathbb{Q}}\right) / T^{*}$	0.00000009	0.00000008
RMSE	0.000297	0.000283
MAE	0.000208	0.000198
ν_{1}^{*}	-0.000058	-0.000055
	$[-6.6459]^{* *}$	$[-4.9423]^{* *}$
ν_{2}^{*}	0.000072	0.000071
	$[5.7860]^{* *}$	$[4.5783]^{* *}$

Table 9 : $\operatorname{VAR}(1)$ and $\operatorname{VAR}(2)$ Factor-Based Term Structure models. Parameter estimates of $\left(\Phi_{1}^{*}, \Phi_{2}^{*}\right) .\left({ }^{* *}\right)$ denotes a parameter significant at 0.05; (*) denotes a parameter significant at 0.1 .

	$\operatorname{VAR}(1)$		VAR(2)	
Φ_{1}^{*}	1.0131	0.1105	1.3154	0.6020
	[805.8869] **	[34.5743] **	[28.4716] **	[9.5120] **
	-0.0156	0.9072	-0.2528	0.4142
	[-8.6611] **	[203.2978] **	[-3.5778] **	[4.2509] **
Φ_{2}^{*}			-0.3004	-0.4890
			[-6.5177] **	[-7.8923] **
			0.2342	0.4839
			[3.3244] **	[5.0769] **

\square We find that, also in this bivariate risk-neutral (pricing) framework, the lagged values of the short rate and spread play an important role in the model specification. One may observe the significativity of all risk-neutral AR coefficients in the VAR(2) specification.

In other words, a $\operatorname{VAR}(2)$ specification for the historical and risk-neutral dynamics of the factor driving term structure shapes, lead to propose a bivariate term structure model which is able to fit yields to maturity better than the $\operatorname{VAR}(1)$ and $\operatorname{AR}(p)$ specification.

5.1.6 In-sample fit of the Yield Curve

\square Summary of in-sample fit performances, using $R M S E$ and $M A E$.
\square The bivariate setting strongly dominate the scalar one, regardless the number of lags.
\square In the bivariate setting, the introduction of an additional lag (marginally) improves the fitting performance.

	$\operatorname{AR}(6)$	$\operatorname{VAR}(1)$	$\operatorname{VAR}(2)$
$R M S E$	0.000679	0.000297	0.000283
MAE	0.000509	0.000208	0.000198

5.1.7 Do these models explain the Violation of the EHT ?

\square Short Horizon Expectation Hypothesis Tests : lags are useful !

Short Horizon	$m=3$ months	$m=6$ months	$m=9$ months
$h=6$ months	$-0.6942(0.2533)$		
2-Factor $\operatorname{VAR}(1)$	$0.5828(0.3485)$		
2-Factor $\operatorname{VAR}(2)$	$-0.3800(0.3837)$		
$h=9$ months	$-0.8863(0.3238)$	$-0.4023(0.2429)$	
2-Factor $\operatorname{VAR}(1)$	$0.4133(0.3469)$	$0.4722(0.2693)$	
2-Factor $\operatorname{VAR}(2)$	$-0.5480(0.3960)$	$-0.3890(0.3182)$	
$h=12 \operatorname{months}$	$-1.3226(0.3530)$	$-0.7867(0.2381)$	$-0.4371(0.1312)$
2-Factor $\operatorname{VAR}(1)$	$0.2454(0.3486)$	$0.3187(0.2710)$	$0.3796(0.2430)$
2-Factor $\operatorname{VAR}(2)$	$-0.6935(0.4069)$	$-0.5272(0.3248)$	$-0.3675(0.2930)$

\square Long Horizon Expectation Hypothesis Tests: some problem !

Long Horizon	$m=1$ year	$m=2$ years	$m=3$ years
$h=4$ years	$-1.8078(0.2981)$	$-0.8380(0.2889)$	$-0.0421(0.2682)$
2-Factor $\operatorname{VAR}(1)$	$-0.8569(0.3536)$	$-0.0085(0.3414)$	$0.8626(0.3514)$
2-Factor $\operatorname{VAR}(2)$	$-1.4088(0.4084)$	$-0.2338(0.3864)$	$0.9368(0.3843)$
$h=5$ years	$-1.7470(0.3291)$	$-0.9720(0.3199)$	$-0.2378(0.3283)$
2-Factor $\operatorname{VAR}(1)$	$-1.1444(0.4102)$	$-0.0033(0.3953)$	$1.1279(0.3970)$
2-Factor $\operatorname{VAR}(2)$	$-1.6686(0.4635)$	$-0.2112(0.4373)$	$1.2060(0.4267)$

\square Which "directions" should we follow to improve the empirical performances of a given model ?
i) Adding new factors (latent and/or observable) or sources of non-linearities (stochastic volatility, jumps, switching of regimes) able to explain the strong persistence in yields [see Dai, Singleton and Yang (2007, RFS), Monfort and Pegoraro (2007, JFEC) and Gourieroux, Monfort, Pegoraro and Renne (2012)].
ii) Estimating model parameters in a way coherent with interest rates persistence [see Jardet, Monfort and Pegoraro (2012, JBF)].

5.2 Alternative Estimation Procedures for Gaussian ATSMs

5.2.1 $M L E$ through the "Inversion Procedure"

\square Let us consider a Gaussian VAR(1) Factor-Based term structure model in which the latent factor $\left(x_{t}\right)$ is K-dimensional. Let us consider, at date t, K yields (among the M in the data base) that we organize in the vector $R_{t}^{K}=[R(t, t+$ $\left.\left.h_{1}\right), \ldots, R\left(t, t+h_{K}\right)\right]^{\prime}$.
\square Now, the affine relation between this vector of yields and the factor x_{t} can be written in the following way:

$$
\begin{aligned}
& R_{t}^{K}=\mathcal{C}_{K} x_{t}+\mathcal{D}_{K}, \mathcal{C}_{K}=\mathcal{C}_{K}(\theta), \mathcal{D}_{K}=\mathcal{D}_{K}(\theta), \theta=\left(\theta^{\mathbb{P}}, \theta^{\mathbb{Q}}\right) \\
& \text { where } \mathcal{C}_{K}=\left[\begin{array}{ccc}
-\frac{c_{1, h_{1}}}{h_{1}} & \cdots & -\frac{c_{K, h_{1}}}{h_{1}} \\
\vdots & \ddots & \vdots \\
-\frac{c_{1, h_{K}}}{h_{K}} & \cdots & -\frac{c_{K, h_{K}}}{h_{K}}
\end{array}\right], \text { and } \mathcal{D}_{K}=\left[\begin{array}{c}
-\frac{d_{h_{1}}}{h_{1}} \\
\vdots \\
-\frac{d_{h_{K}}}{h_{K}}
\end{array}\right]
\end{aligned}
$$

\square it is a linear system of K equations in K unknowns (the scalar variables in x_{t}).
\square Given the observed yields $R_{K}(t)$, we can easily solve for x_{t} and write:

$$
x_{t}=\mathcal{C}_{K}^{-1}\left[R_{t}^{K}-\mathcal{D}_{K}\right]
$$

\square Given that the conditional p.d.f. $f\left(x_{t+1} \mid x_{t}\right)$ is known (it is the p.d.f. of $K-$ dimensional conditional Gaussian process with conditional mean $E_{t}\left[x_{t+1}\right]=\nu+$ Φx_{t} and conditional variance $V_{t}\left[x_{t+1}\right]=\Omega$), we have that (exercise):

$$
f\left(R_{t+1}^{K} \mid R_{t}^{K}\right)=\frac{1}{\operatorname{det}\left(\mathcal{C}_{K}\right)} f\left(x_{t+1} \mid x_{t}\right)
$$

Given the set of observations at times $\{1, \ldots, T\}$, the log-Likelihood function is given by:

$$
\begin{aligned}
& \mathcal{L}(\theta)=\sum_{t=1}^{T} \log f\left(R_{t}^{K} \mid R_{t-1}^{K}\right) \\
& \text { assuming } f\left(R_{1}^{K} \mid R_{0}^{K}\right)=f\left(R_{0}^{K}\right), \text { i.e., the marginal density. }
\end{aligned}
$$

\square The Maximum Likelihood Estimator (MLE) is : $\theta^{M L}=\operatorname{ArgMax}_{\theta} \mathcal{L}(\theta)$ [Pearson and Sun (1994)].Here we have assumed that K yields are observed without errors \rightarrow in reality they are reconstructed by interpolation/fitting techniques.Moreover, we have to decide, in our data base, which yields (residual maturities) are observed without errors.In small sample (quarterly observations), different results (estimates) are obtained when different maturities are used.
\square Chen and Scott (1993) tackle this problem assuming that additional yields are observed with errors.
\square Let us assume that $M-K$ additional yields are measured with errors, besides the K observed without errors:

$$
\begin{aligned}
R_{t}^{M-K} & =\mathcal{C}_{M-K} x_{t}+\mathcal{D}_{M-K}+\eta_{t} \\
R_{t}^{M-K} & =\left[R\left(t, t+h_{K+1}\right), \ldots, R\left(t, t+h_{M}\right)\right]^{\prime}
\end{aligned}
$$

where the conditional distribution of the measurement errors $\left(\eta_{t}\right)$ is known and given by $h\left(\eta_{t} \mid \eta_{t-1}\right)$. Moreover, $\eta_{t} \perp R_{t}^{M-K}, \eta_{t} \perp R_{t}^{K}$.
\square Then, it is possible to prove that (exercise) the Log-Likelihood function is given by:

$$
\begin{aligned}
& \mathcal{L}^{*}(\theta)=\mathcal{L}(\theta)+\sum_{t=1}^{T} \log h\left(\eta_{t} \mid \eta_{t-1}\right) \\
& \text { assuming } h\left(\eta_{1} \mid \eta_{0}\right)=h\left(\eta_{1}\right), \text { i.e., the marginal density . }
\end{aligned}
$$

\square The Maximum Likelihood Estimator (MLE) is : $\theta^{M L}=\operatorname{ArgMax}_{\theta} \mathcal{L}^{*}(\theta)$ [Chen and Scott (1993)].We can not apply the two above mentioned estimation procedures if $p>1$, given that the inversion of the yield-to-maturity formula (using observed yields) provides at two subsequent dates two different values for the same scalar factor.

5.2.2 $M L E$ through Kalman Filter recursions

\square If we assume that all yields are observed with errors, the Gaussian VAR(1)-based ATSM can be written in a State Space form:

$$
\begin{aligned}
& R_{t}^{M}=\mathcal{C}_{M}(\theta) x_{t}+\mathcal{D}_{M}(\theta)+\eta_{t}, \quad \eta_{t} \sim \operatorname{IIN}(0, Q), \quad(\text { Measurement Equation }), \\
& x_{t}=\nu+\Phi x_{t-1}+\varepsilon_{t}, \quad \varepsilon_{t} \sim \operatorname{IIN}(0, R), \quad(\text { Transition Equation }), \\
& \eta_{t} \perp \varepsilon_{t} .
\end{aligned}
$$

$\square R_{t}^{M}$ is the ($M \times 1$) vector of observed variables (observed yields);x_{t} is the ($K \times 1$) vector of unobserved factors (latent factors).Unknown vector of parameters we have to estimate is $\theta=\left(\theta_{\mathbb{P}}, \theta_{\mathbb{Q}}\right)^{\prime}$.Statistical Inference:

- estimate θ by MLE;
- estimate the unobserved latent factors x_{t} (filtering);
\square The Kalman Filter (KF) is a recursive algorithm consisting of a prediction and update step.It is a Linear Gaussian State Space Model and, thus, parameters can be efficiently estimated by Maximum Likelihood with the (exact!) Likelihood function calculated by the Kalman Filter. KF is optimal in MSE sense.Notation: $\underline{R_{t}^{M}}=\left(R_{t}^{M}, R_{t-1}^{M}, \ldots, R_{1}^{M}\right)$ (date- t information set);
\square Some definitions:
- Let $x_{t \mid t-1}:=E\left[x_{t} \mid \underline{R_{t-1}^{M}}\right]=\nu+\Phi x_{t-1 \mid t-1}$ be the best linear predictor of x_{t} given the history of observable until $t-1$;
- Let $R_{t \mid t-1}^{M}:=E\left[R_{t}^{M} \mid \underline{R_{t-1}^{M}}\right]=\mathcal{C}_{M} x_{t \mid t-1}+\mathcal{D}_{M}$ be the best linear predictor of R_{t}^{M} given $\underline{R_{t-1}^{M}}$;
- Let $x_{t \mid t}:=E\left[x_{t} \mid \underline{R_{t}^{M}}\right]$ be the best linear predictor of x_{t} given the history of observable until t;What is the purpose of the Kalman Filter ?
- Let us assume we have $x_{t \mid t-1}$ and $R_{t \mid t-1}^{M}$.
- We observe a new R_{t}^{M}.
- We need to obtain $x_{t \mid t}$.
- Note that $x_{t+1 \mid t}=\nu+\Phi x_{t \mid t}$ and $R_{t+1 \mid t}^{M}=\mathcal{C}_{M} x_{t+1 \mid t}+\mathcal{D}_{M}$, so we can go back to the first step and wait for R_{t+1}^{M}.
- So, the key question is how to obtain $x_{t \mid t}$ from $x_{t \mid t-1}$ and R_{t}^{M}.
\square Let us assume we adopt the following equation to get $x_{t \mid t}$ from $x_{t \mid t-1}$ and R_{t}^{M} :

$$
x_{t \mid t}=x_{t \mid t-1}+\mathcal{K}_{t}\left(R_{t}^{M}-R_{t \mid t-1}^{M}\right)=x_{t \mid t-1}+\mathcal{K}_{t}\left(R_{t}^{M}-\mathcal{C}_{M} x_{t \mid t-1}-\mathcal{D}_{M}\right)
$$

\square This is formula has a probabilistic justification (to follow)What is \mathcal{K}_{t} ? It is the Kalman filter gain and it measures how much we update $x_{t \mid t-1}$ as a function of the error we make in predicting R_{t}^{M}.
\square How do we find optimal \mathcal{K}_{t} ? The KF is about how to build \mathcal{K}_{t} such that we optimally update $x_{t \mid t}$ from $x_{t \mid t-1}$ and R_{t}^{M}.
\square Some additional definitions:

- Let $\Sigma_{t \mid t-1}:=E\left[\left(x_{t}-x_{t \mid t-1}\right)\left(x_{t}-x_{t \mid t-1}\right)^{\prime} \mid \underline{R_{t-1}^{M}}\right]$ be the predicting error variancecovariance matrix of x_{t} given the history of observable until $t-1$.
- Let $\Omega_{t \mid t-1}:=E\left[\left(R_{t}^{M}-R_{t \mid t-1}^{M}\right)\left(R_{t}^{M}-R_{t \mid t-1}^{M}\right)^{\prime} \mid \underline{R_{t-1}^{M}}\right]$ be the predicting error variance covariance matrix of R_{t}^{M} given the history of observable until $t-1$.
- Let $\Sigma_{t \mid t}:=E\left[\left(x_{t}-x_{t \mid t}\right)\left(x_{t}-x_{t \mid t}\right)^{\prime} \mid \underline{R_{t}^{M}}\right]$ be the predicting error variance covariance matrix of x_{t} given the history of observable until t.Finding the optimal \mathcal{K}_{t} :
- We search for \mathcal{K}_{t} such that $\rightarrow \operatorname{Min} \Sigma_{t \mid t}$.
- It can be shown that, if it is the case:

$$
\mathcal{K}_{t}=\Sigma_{t \mid t-1} \mathcal{C}_{M}\left(\mathcal{C}_{M}^{\prime} \Sigma_{t \mid t-1} \mathcal{C}_{M}+Q\right)^{-1}
$$

- we will provide some intuition later.
\square Given $\Sigma_{t \mid t-1}, R_{t}^{M}$ and $x_{t \mid t-1}$, we can now set the Kalman Filter algorithm.
\square Given $\Sigma_{t \mid t-1}$:

$$
\Omega_{t \mid t-1}=\mathcal{C}_{M}^{\prime} \Sigma_{t \mid t-1} \mathcal{C}_{M}+Q
$$

and

$$
E\left[\left(R_{t}^{M}-R_{t \mid t-1}^{M}\right)\left(x_{t}-x_{t \mid t-1}\right)^{\prime} \mid \underline{R_{t-1}^{M}}\right]=\mathcal{C}_{M}^{\prime} \Sigma_{t \mid t-1}
$$

\square Given $\Sigma_{t \mid t-1}$, we can also compute:

$$
\mathcal{K}_{t}=\Sigma_{t \mid t-1} \mathcal{C}_{M}\left(\mathcal{C}_{M}^{\prime} \Sigma_{t \mid t-1} \mathcal{C}_{M}+Q\right)^{-1}=\Sigma_{t \mid t-1} \mathcal{C}_{M} \Omega_{t \mid t-1}^{-1}
$$

\square Given $x_{t \mid t-1}$:

$$
R_{t \mid t-1}^{M}=\mathcal{C}_{M} x_{t \mid t-1}+\mathcal{D}_{M}
$$

\square Once we have $\Sigma_{t \mid t-1}, R_{t}^{M}, x_{t \mid t-1}$ and \mathcal{K}_{t}, we compute:

$$
x_{t \mid t}=x_{t \mid t-1}+\mathcal{K}_{t}\left(R_{t}^{M}-R_{t \mid t-1}^{M}\right)=x_{t \mid t-1}+\mathcal{K}_{t}\left(R_{t}^{M}-\mathcal{C}_{M} x_{t \mid t-1}-\mathcal{D}_{M}\right)
$$

and

$$
\Sigma_{t \mid t}=E\left[\left(x_{t}-x_{t \mid t}\right)\left(x_{t}-x_{t \mid t}\right)^{\prime} \mid \underline{R_{t}^{M}}\right]=\Sigma_{t \mid t-1}-\mathcal{K}_{t} \mathcal{C}_{M} \Sigma_{t \mid t-1}
$$

where we exploit the fact that $x_{t}-x_{t \mid t}=x_{t}-x_{t \mid t-1}-\mathcal{K}_{t}\left(R_{t}^{M}-\mathcal{C}_{M} x_{t \mid t-1}-\mathcal{D}_{M}\right)$.

Given $\Sigma_{t \mid t}$, we compute:

$$
\Sigma_{t+1 \mid t}=\Phi \Sigma_{t \mid t} \Phi^{\prime}+R
$$

\square Given $x_{t \mid t}$, we can compute:

$$
\begin{aligned}
& x_{t+1 \mid t}=\Phi x_{t \mid t}, \\
& R_{t+1 \mid t}^{M}=\mathcal{C}_{M} x_{t+1 \mid t}+\mathcal{D}_{M}
\end{aligned}
$$

\square Therefore, from $x_{t \mid t-1}, \Sigma_{t \mid t-1}$ and R_{t}^{M} we compute $x_{t \mid t}$ and $\Sigma_{t \mid t}$.
\square We also compute $R_{t \mid t-1}^{M}$ and $\Omega_{t \mid t-1}$. Why ?

- To calculate the likelihood function of $\underline{R_{T}^{M}}=\left(R_{T}^{M}, R_{T-1}^{M}, \ldots, R_{1}^{M}\right)$ (to follow).
- This estimation methodology is adapted also to the case $p>1$ (companion form).

The Kalman Filter Algorithm: A Review

- We start with $x_{t \mid t-1}, \Sigma_{t \mid t-1}$ and we observe R_{t}^{M}. Then:

$$
\begin{aligned}
\Omega_{t \mid t-1} & =\mathcal{C}_{M}^{\prime} \Sigma_{t \mid t-1} \mathcal{C}_{M}+Q \\
R_{t \mid t-1}^{M} & =\mathcal{C}_{M} x_{t \mid t-1}+\mathcal{D}_{M}
\end{aligned}
$$

- Filtering Step:

$$
\begin{aligned}
& \mathcal{K}_{t}=\Sigma_{t \mid t-1} \mathcal{C}_{M}\left(\mathcal{C}_{M}^{\prime} \Sigma_{t \mid t-1} \mathcal{C}_{M}+Q\right)^{-1}=\Sigma_{t \mid t-1} \mathcal{C}_{M} \Omega_{t \mid t-1}^{-1} \\
& \Sigma_{t \mid t}=\Sigma_{t \mid t-1}-\mathcal{K}_{t} \mathcal{C}_{M} \Sigma_{t \mid t-1} \\
& x_{t \mid t}=x_{t \mid t-1}+\mathcal{K}_{t}\left(R_{t}^{M}-\mathcal{C}_{M} x_{t \mid t-1}-\mathcal{D}_{M}\right),
\end{aligned}
$$

- Prediction Step:

$$
\begin{aligned}
& x_{t+1 \mid t}=\nu+\Phi x_{t \mid t}, \\
& \Sigma_{t+1 \mid t}=\Phi \Sigma_{t \mid t} \Phi^{\prime}+R .
\end{aligned}
$$

\square Some intuition about the optimal $\mathcal{K}_{t}=\Sigma_{t \mid t-1} \mathcal{C}_{M}\left(\mathcal{C}_{M}^{\prime} \Sigma_{t \mid t-1} \mathcal{C}_{M}+Q\right)^{-1}$

- As we have seen before, we can write $\mathcal{K}_{t}=\Sigma_{t \mid t-1} \mathcal{C}_{M} \Omega_{t \mid t-1}^{-1}$
- If we have made a big mistake in forecasting $x_{t \mid t-1}$ using the past information (i.e. $\Sigma_{t \mid t-1}$ large) we give a lot of weight to the new information (\mathcal{K}_{t} large).
- If the new information is noise (Q large) we give a lot of weight to the old prediction (\mathcal{K}_{t} small).An important step in the Kalman filter is to set the initial conditionsInitial conditions:

1. $x_{1 \mid 0}$
2. $\Sigma_{1 \mid 0}$

How do we fix them ? Since we consider only stable system (stationary VAR dynamics) the standard approach is to set $x_{1 \mid 0}=E\left(x_{t}\right)$ (marginal mean) and $\Sigma_{1 \mid 0}=V\left(x_{t}\right)($ marginal variance $)$.Writing the Log-Likelihood Function

- We want to write (to calculate) the likelihood function of $\underline{R_{T}^{M}}=\left(R_{T}^{M}, R_{T-1}^{M}, \ldots, R_{1}^{M}\right)$:

$$
\begin{aligned}
\mathcal{L}(\theta) & =\ln f\left(R_{T}^{M}, R_{T-1}^{M}, \ldots, R_{1}^{M} \mid \theta\right)=\sum_{t=1}^{T} \ln f\left(R_{t}^{M} \mid \underline{R_{t-1}^{M}} ; \theta\right) \\
& =-\sum_{t=1}^{T}\left[\frac{N}{2} \ln 2 \pi+\frac{1}{2} \ln \left|\Omega_{t \mid t-1}\right|+\frac{1}{2} \sum_{t=1}^{T} v_{t} \Omega_{t \mid t-1}^{-1} v_{t}\right]
\end{aligned}
$$

- where:

$$
\begin{aligned}
v_{t} & =R_{t}^{M}-R_{t \mid t-1}^{M}=R_{t}^{M}-\mathcal{C}_{M} x_{t \mid t-1}-\mathcal{D}_{M} \\
\Omega_{t \mid t-1} & =\mathcal{C}_{M}^{\prime} \Sigma_{t \mid t-1} \mathcal{C}_{M}+Q
\end{aligned}
$$

- Remember: KF calculates $\mathcal{L}(\theta)$ while its maximization is obtained through a numerical algorithm ($\mathrm{BFGS}, \mathrm{BHHH}, \ldots$) and provides the $M L E \widehat{\theta}_{T}$.

5.2.3 The Adrian, Crump and Moench (2012, JFE) Approach

\square A Gaussian ATSM with $\operatorname{VAR}(1) K$-dimensional factor x_{t} :

$$
x_{t+1}=\nu+\Phi x_{t}+\sum \varepsilon_{t+1},
$$

- and with exponential-affine SDF ($\Gamma_{t}=\gamma_{o}+\gamma x_{t}$):

$$
M_{t, t+1}=\exp \left[-r_{t}+\Gamma_{t}^{\prime} \varepsilon_{t+1}-\frac{1}{2} \Gamma_{t}^{\prime} \Gamma_{t}\right],
$$

- has a one-period geometric bond return following:

$$
\rho(t+1, T)=r_{t}-\frac{1}{2} \omega(t+1, T)^{\prime} \omega(t+1, T)+\omega(t+1, T)^{\prime} \Gamma_{t}-\omega(t+1, T)^{\prime} \varepsilon_{t+1}
$$

where $\omega(t+1, T)=-\left(\Sigma^{\prime} C_{T-t-1}\right)$ is an K-dimensional vector.Adrian, Crump and Moench (2012) exploit the fact that the one-period excess bond return:

$$
r x_{t+1}^{(h-1)}:=\log B(t+1, t+h)-\log B(t, t+h)-r_{t}
$$

- is conditionally Gaussian and linear in $\left(\gamma_{o}, \gamma\right)$
- in order to make their estimation computationally fast, even for a large number of factors.
- Let us present their approach in the following slides.The Adrian, Crump and Moench (2012) approach:
- Given the $\operatorname{VAR}(1)$ factor x_{t}, the SDF $M_{t, t+1}=\exp \left[-r_{t}-\Gamma_{t}^{\prime} \varepsilon_{t+1}-\frac{1}{2} \Gamma_{t}^{\prime} \Gamma_{t}\right]$ and the excess bond return $r x_{t+1}^{(h-1)}$, from $B(t, t+h)=E_{t}\left[M_{t, t+1} B(t+1, t+h)\right]$ we find:

$$
1=E_{t}\left[\exp \left(r x_{t+1}^{(h-1)}-\frac{1}{2} \Gamma_{t}^{\prime} \Gamma_{t}-\Gamma_{t}^{\prime} \varepsilon_{t}\right)\right]
$$

- Under the assumption that $\left\{r x_{t+1}^{(h-1)}, \varepsilon_{t+1}\right\}$ are jointly normally distributed:

$$
\begin{aligned}
E_{t}\left[r x_{t+1}^{(h-1)}\right] & =\operatorname{Cov}_{t}\left(r x_{t+1}^{(h-1)}, \varepsilon_{t+1}^{\prime} \Gamma_{t}\right)-\frac{1}{2} \operatorname{Var}_{t}\left(r x_{t+1}^{(h-1)}\right) \\
& =\operatorname{Cov}_{t}\left(r x_{t+1}^{(h-1)}, \varepsilon_{t+1}^{\prime}\right)\left(\gamma_{o}+\gamma x_{t}\right)-\frac{1}{2} \operatorname{Var}_{t}\left(r x_{t+1}^{(h-1)}\right) \\
& =\beta_{t}^{(h-1) \prime}\left(\gamma_{o}+\gamma x_{t}\right)-\frac{1}{2} \operatorname{Var}_{t}\left(r x_{t+1}^{(h-1)}\right)
\end{aligned}
$$

where $\beta_{t}^{(h-1) \prime}:=\operatorname{Cov}_{t}\left(r x_{t+1}^{(h-1)}, \varepsilon_{t+1}^{\prime}\right)$.

- Now, we can always decompose $r x_{t+1}^{(h-1)}$ into an expected component and an unexpected one:

$$
r x_{t+1}^{(h-1)}=E_{t}\left[r x_{t+1}^{(h-1)}\right]+\left(r x_{t+1}^{(h-1)}-E_{t}\left[r x_{t+1}^{(h-1)}\right]\right)
$$

- and the latter can be further decomposed into a component conditionally correlated with ε_{t+1} and another that is conditionally orthogonal to ε_{t+1} :

$$
r x_{t+1}^{(h-1)}-E_{t}\left[r x_{t+1}^{(h-1)}\right]=\beta_{t}^{(h-1) \prime} \varepsilon_{t+1}+e_{t+1}^{(h-1)}
$$

where the return pricing errors $e_{t+1}^{(h-1)}$ are conditionally i.i.d. with variance σ^{2}.

- Given that $\operatorname{Var}_{t}\left(r x_{t+1}^{(h-1)}\right)=\beta_{t}^{(h-1) ı} \beta_{t}^{(h-1)}+\sigma^{2}$ can thus write:

$$
r x_{t+1}^{(h-1)}=\beta_{t}^{(h-1) \prime}\left(\gamma_{o}+\gamma x_{t}\right)-\frac{1}{2}\left(\beta_{t}^{(h-1) \prime} \beta_{t}^{(h-1)}+\sigma^{2}\right)+\beta_{t}^{(h-1) \prime} \varepsilon_{t+1}+e_{t+1}^{(h-1)}
$$

- In their baseline model they assume x_{t} is observable and made of a linear combination of yields, such as principal components. They estimate model parameters using holding period returns based on the same set of yields. Per construction, this implies $\beta_{t}=\beta$.
- Stacking the system across $h \in\{2, \ldots, H\}$ maturities and $t \in\{1, \ldots, T-1\}$ time periods, we rewrite it as:

$$
r x=\beta^{\prime}\left(\gamma_{o} \mathbf{1}_{T-1}^{\prime}+\gamma X_{-}\right)-\frac{1}{2}\left(B^{*} \operatorname{vec}\left(I_{K}\right)+\sigma^{2} \mathbf{1}_{H-1}\right) \mathbf{1}_{T-1}^{\prime}+\beta^{\prime} \mathcal{E}+E
$$

- where $r x$ is a ($H-1, T-1$) matrix of excess returns,

$$
\beta=\left[\beta^{(2)}\left|\beta^{(3)}\right| \ldots \mid \beta^{(H)}\right] \text { is a }(K, H-1) \text { matrix of factor loadings }
$$

- $\mathbf{1}_{\ell}$ is an ℓ-dimensional vector of ones;
- $X_{-}=\left[X_{1}, \ldots, X_{T-1}\right]$ is a ($K, T-1$) matrix of lagged pricing factors;
- $B^{*}=\left[\operatorname{vec}\left(\beta^{(2)} \beta^{(2) \prime}\right)\left|\operatorname{vec}\left(\beta^{(3)} \beta^{(3) \prime}\right)\right| \ldots \mid \operatorname{vec}\left(\beta^{(H)} \beta^{(H) \prime}\right)\right]^{\prime}$ is a ($H-1, K^{2}$) matrix;
- \mathcal{E} is a $(K, T-1)$ matrix of normalized residuals $\left\{\widehat{\varepsilon}_{t}\right\}$, and E is a $(H-1, T-1)$ matrix of $\left\{\widehat{e_{t}^{(h)}}\right\}$ residuals.Estimation Procedure:
$\left.1^{s t}\right)$ We estimate $\theta_{\mathbb{P}}=(\nu, \Phi, \Sigma)$ by OLS, and then we build \mathcal{E} from $\left\{\widehat{\varepsilon}_{t}\right\}$
$2^{\text {nd }}$) Run the following regression:

$$
\begin{aligned}
r x & =\mathbf{a} \mathbf{1}_{T-1}^{\prime}+\beta^{\prime} \mathcal{E}+\mathbf{c} X_{-}+E \\
\mathbf{a} & =\beta^{\prime} \gamma_{o}-\frac{1}{2}\left(B^{*} \operatorname{vec}\left(I_{K}\right)+\sigma^{2} \mathbf{1}_{H-1}\right) \\
\mathbf{c} & =\beta^{\prime} \gamma
\end{aligned}
$$

in order to obtain:

$$
\left[\widehat{\mathbf{a}}\left|\widehat{\beta}^{\prime}\right| \widehat{\mathbf{c}}\right]=\operatorname{rx} \widetilde{Z}^{\prime}\left(\widetilde{Z} \widetilde{Z}^{\prime}\right)^{-1} \text { where } \widetilde{Z}=\left[\mathbf{1}_{T-1}\left|\widehat{\mathcal{E}}^{\prime}\right| X_{-}^{\prime}\right]^{\prime}
$$

we collect the associated residuals in \widehat{E}, in order to calculate $\widehat{\sigma}^{2}=\operatorname{Tr}\left(\widehat{E} \widehat{E}^{\prime}\right) /(H-$

1) $(T-1)$, and we calculate \widehat{B}^{*} from $\widehat{\beta}^{\prime}$.
$3^{\text {rd }}$) Given the previously estimated parameters, we easily find:

$$
\widehat{\gamma}=\left(\widehat{\beta} \widehat{\beta^{\prime}}\right)^{-1} \widehat{\beta} \widehat{\mathbf{c}}
$$

and from $\widehat{\beta}^{\prime} \gamma_{o}=\widehat{\mathbf{a}}+\frac{1}{2}\left(\widehat{B}^{*} \operatorname{vec}\left(I_{K}\right)+\widehat{\sigma}^{2} \mathbf{1}_{H-1}\right)$ we retrieve:

$$
\widehat{\gamma}_{o}=\left(\widehat{\beta} \widehat{\beta}^{\prime}\right)^{-1} \widehat{\beta}\left[\widehat{\mathbf{a}}+\frac{1}{2}\left(\widehat{B}^{*} \operatorname{vec}\left(I_{K}\right)+\widehat{\sigma}^{2} \mathbf{1}_{H-1}\right)\right] .
$$

- From the estimated model parameters, we can generate e zero-coupon yield curve using the recursive equations (C_{h}, D_{h}) and an identification between $\beta^{(h)}$ and C_{h} is easily found (exercise).
- Possible generalization to $p>1$.

5.3 Ang and Piazzesi (2003, JME)

5.3.1 Purpose of the paper

The authors describe the (particular!) joint dynamics of bond yields and macroeconomic variables in a discrete-time Gaussian Vector Autoregression setting, where "causality" and no-arbitrage restrictions are imposed in order to guarantee the theoretical and empirical tractability of the model.\square Using an affine discrete-time term structure model with inflation and economic growth factors, along with latent variables, they investigate how macro variables affect bond prices and the dynamics of the yield curve.

5.3.2 Main results

They find that:- the forecasting performance of a Gaussian VAR improves when no-arbitrage restrictions are imposed
- and that (no-arbitrage) models with macro factors forecast better than models with only unobservable factors.
\square Variance decompositions show that macro factors explain up to 85% of the variation in bond yields (over short and middle maturities).Macro factors primarily explain movements at the short end and middle of the yield curve.
\square Unobservable factors still account for most of the movement at the long end of the yield curve.
\square They observe (monthly) yields of $1,3,12,36$ and 60 months to maturity (1, 12 and 60 observed without errors) from 1952:06 to 2000:12.Macro-variables are observed from 1952:01 to 2000:12. These variables are divided in two groups.
\square The first group consists of various inflation measures which are based on the CPI (consumer price index), the PPI (producer price index) of finished goods, and spot market commodity prices ($P C O M$).
\qquad The second group contains variables that capture real activity: the index of Help Wanted Advertising in Newspapers (HELP), unemployment ($U E$), the growth rate of employment (EMPLOY) and the growth rate of industrial production (IP).
\square
This list of variables includes most variables that have been used in monthly VARs in the macro literature. Among these variables, $P C O M$ and $H E L P$ are traditionally thought of as leading indicators of inflation and real activity, respectively.
\square All growth rates (including inflation) are measured as the difference in logs of the index at time t and $(t-12) ; t$ in months.

Monthly Zero Coupon Bonc Yields

Tabie 1
Sunmary statistics of data

	Central moments				Adtoconrelations		
	Mean	Stdev	Skew	Kurt	Lag 1	Lag 2	Lag 3
1 mlh	5.1316	2.7399	1.0756	4.6425	0.9716	0.9453	0.9323
3 mlh	5.4815	2.3550	1.3704	4.5543	0.9815	0.9606	0.9415
12 moth	5.8849	2.3445	0.3523	3.8856	0.9824	0.9626	0.9457
36 math	6.2241	2.7643	0.7424	3.5090	0.9875	0.9739	0.9620
60 meth	6.4015	2.7264	0.6838	3.2719	0.9892	0.9782	0.9687
CPI	3.8612	2.3733	1.2709	4.3655	0.9931	0.9847	0.9738
PCOM	0.9425	11.2974	1.0352	5.0273	0.9684	0.9162	0.8600
PPI	3.0590	3.5325	1.4436	4.9218	0.9863	0.9705	0.9521
HELP	66.7517	22.3257	0.1490	1.8665	0.9944	0.9900	0.9830
EMPLOY	1.6594	1.5282	0.4690	3.2534	0.9378	0.8954	0.8410
IP	3.4717	5.3697	0.5578	3.6592	0.9599	0.8889	0.7972
UE	5.7364	1.5650	0.4924	3.2413	0.9906	0.9777	0.9595

The 1,3,12:36 and 60 month yields ase annual zero coupon bond yields from the Fama Bliss CRSP bonc files. The inflation measures CPI, PCOM and PPI refer to CPI inflation, spot market commodity price inflation, and PPI Finished Gools) inflation respectively. We calculate tie inflation measure at time : using $\log \left(P_{t} / P_{t-12}\right)$ where P_{t} is the inflation index. The real activity measures HELP, EMPLOY: IP anc UE refer to the Index of Helf Winted Advetising in Newspapers, the growth rate of employnrent, the growth rate in industrial production and the unemploymen: rate eespectively. The srowth rate in employmen: and industrial production are calculated using $\log \left(Y_{t} / I_{t-12}\right)$ where Y_{t} is the employment of industrial production index. For the macro variables, tie sample period is 1952:01 to 2000:12. For the bond yields. the sample period is 1952:06 to 2000:12.

5.3.3 Setup

Historical Factor Dynamics

The multivariate FACTOR (the information used by the investor to price bonds)is denoted:

$$
\begin{aligned}
X_{t} & =\left(X_{t}^{o \prime}, X_{t}^{u \prime}\right)^{\prime}, \text { where } \\
X_{t}^{o \prime} & =\left(f_{t}^{o \prime}, f_{t-1}^{o}, \ldots, f_{t-p+1}^{o}\right)^{\prime}, \text { the MACRO factors } \\
X_{t}^{u \prime} & =f_{t}^{u}, \text { the LATENT factors }
\end{aligned}
$$

$\square f_{t}^{o}$ denotes a bivariate process of macro factors following a Gaussian $\operatorname{VAR}(p)$ process with $p=12$ (monthly observations):

$$
\begin{aligned}
& f_{t}^{o}=\rho_{1} f_{t-1}^{o}+\ldots+\rho_{12} f_{t-12}^{o}+\Omega u_{t}^{o}, u_{t}^{o} \sim \operatorname{IIN}(0, I) \\
& \Omega=(2 \times 2) \text { lower triangular, }\left(\rho_{1}, \ldots, \rho_{12}\right)(2 \times 2) \text { full AR matrices } .
\end{aligned}
$$

$\square f_{t}^{u}$ denotes a trivariate process of latent factors following a Gaussian VAR(1) process:

$$
\begin{aligned}
f_{t}^{u}= & \rho f_{t-1}^{u}+u_{t}^{u}, u_{t}^{u} \sim \operatorname{IIN}(0, I) \\
& \rho \text { is }(3 \times 3) \text { lower triangular AR matrix. }
\end{aligned}
$$$u_{t}^{u} \perp u_{t}^{o}$

If we define $F_{t}=\left(f_{t}^{o \prime}, f_{t}^{u \prime}\right)^{\prime}$ (5-dimensional vector) we can represent the joint dynamics of the macro and latent factors in the following way:

$$
F_{t}=\Phi_{1} F_{t-1}+\ldots+\Phi_{12} F_{t-12}+\theta u_{t}, u_{t}=\left(u_{t}^{o \prime}, u_{t}^{u \prime}\right)^{\prime} \sim \operatorname{IIN}(0, I)
$$ the coefficients of $\left(\Phi_{2}, \ldots, \Phi_{12}\right)$ corresponding to f_{t}^{u} are set equal to zero. More precisely \rightarrowThe AR matrices are specified in the following way:

$$
\Phi_{1}=\left[\begin{array}{ll}
\Phi_{1,11}^{o} & 0_{2 \times 3} \\
0_{3 \times 2} & \Phi_{1,22}^{u}
\end{array}\right], \quad \Phi_{j}=\left[\begin{array}{ll}
\Phi_{j, 11}^{o} & 0_{2 \times 3} \\
0_{3 \times 2} & 0_{2 \times 3}
\end{array}\right], \forall j \in\{2, \ldots, 12\}
$$

\square We observe that ALL autoregressive matrices are block-diagonal. The authors assume "lagged independence" between macro and latent factors : f_{t}^{o} does not Granger-cause f_{t}^{u} (and vice versa).
\square Lower-right corners of $\Phi_{j}, \forall j \in\{2, \ldots, 12\}$, are equal to zero $\left(\Phi_{j, 22}^{u}=0\right) \rightarrow$ because of the assumption $f_{t}^{u} \sim V A R(1)$.the matrix θ is such that:

$$
\theta=\left[\begin{array}{ll}
\theta_{1}^{o} & 0_{2 \times 3} \\
0_{3 \times 2} & \theta_{2}^{u}
\end{array}\right], \text { where } \theta_{1}^{o}=I_{3 \times 3}, \theta_{1}^{u}=\Omega \text { lower triangular. }
$$

\square The (historical) dynamics of $X_{t}=\left(X_{t}^{o \prime}, X_{t}^{u \prime}\right)^{\prime}$ is:

$$
X_{t}=\mu+\Phi X_{t-1}+\Sigma \varepsilon_{t}, \varepsilon_{t}=\left(u_{t}^{o \prime}, 0, \ldots, 0, u_{t}^{u \prime}\right)^{\prime}
$$

\square What $f_{t}^{o}=\left(f_{t}^{o, 1}, f_{t}^{o, 2}\right)^{\prime}$ is ?
$f_{t}^{o, 1}=1^{\text {st }}$ Principal Component (71\% of explained variance) extracted from an "inflation group" variables, with "inflation group" variables $=$ CPI inflation, PCOM (spot mkt commodity price inflation, PPI inflation.)
$f_{t}^{o, 2}=1^{\text {st }}$ Principal Component (52\% of explained variance) extracted from a "real activity group" variables, with "real activity group" variables $=$ HELP, Unemployment, employment growth rate, industrial prod growth rate.)

Table 2
Principal component analysis

	Principal components: inflation			
	1st	2nd		3 Td
CPI	0.6343		0.3674	0.6802
PCOM	0.4031		0.9080	0.1145
PPI	0.6597		0.2015	0.7240
\% variance explained	0.7143		0.9775	1.0000
	Principal components: real activity			
	1st	2nd	3 Td	4th
HELP	0.3204	0.7365	0.5300	0.2719
UE	0.3597	0.6283	0.6871	0.0612
EMPLOY	0.6330	0.1648	0.2444	0.7158
IP	0.6060	0.1886	0.4327	0.6403
$\%$ variance explained	0.5202	0.7946	0.9518	1.0000

We take the thre (four) macro variables representing inflation (real activity) and nomalize them to zero mean and unit variance. For each group i, the nomalized data Z_{t}^{i} follows the 1 factor model:

$$
Z_{t}^{i}=C_{t}^{\infty, i}+\varepsilon_{t}^{i}
$$

where C is the factor loading vsctor, $\mathrm{E}\left(f_{\mathrm{t}}^{, i}\right)=0, \operatorname{cov}\left(f_{\mathrm{t}}^{\alpha, i}\right)=Y, \mathrm{E}\left(\varepsilon_{0}^{i}\right)=0$, and $\operatorname{cov}\left(\varepsilon_{\mathrm{t}}^{i}\right)=\Gamma$, where Γ is a diagonal matrix. The columns titled 'principal components'" list the principal components corresponding to the first to smallest eigenvalue. The \% variance explained for the ath principal component gives the cumulative proportion of the variance explained by the first up to the nth eigenvalue. IP refers to the growth in industral production, CPI to CPI inflation, PCOM to commodity price inflation and PPI to PPI inflation, HELP refers to the Index of Help Wanted Advertising in Newspapers, UE to the unemployment rate, EMPLOY to the growth in employment. The sample period is 1952:01 to 2000:12
What $f_{t}^{u}=\left(f_{t}^{u, 1}, f_{t}^{u, 2}, f_{t}^{u, 3}\right)^{\prime}$ is ?

- Extracted from 3 yields assumed to be perfectly observed (inverting the affine yield-to-maturity formula): $R(t, t+1), R(t, t+12)$ and $R(t, t+60)$.
- They (classically \rightarrow Litterman and Scheinkman (1991)) act as a:
- LEVEL FACTOR $=f_{t}^{u, 1} \rightarrow$ correlation of 0.92 with $[R(t, t+1)+R(t, t+12)+$ $R(t, t+60)] / 3$ (called "level transformation");
- SLOPE FACTOR $=f_{t}^{u, 2} \rightarrow$ correlation of 0.58 with $[R(t, t+60)-R(t, t+1)]$;
- CURVATURE FACTOR $=f_{t}^{u, 3} \rightarrow$ correlation of 0.77 with $[R(t, t+1)-2 R(t, t+$ 12) $+R(t, t+60)]$.

Short Rate Historical Dynamics

\square The authors assume that:

$$
r_{t}=\delta_{0}+\delta_{11}^{\prime} X_{t}^{o}+\delta_{12}^{\prime} X_{t}^{u}=\delta_{0}+\delta_{1}^{\prime} X_{t}, \text { with } X_{t}^{o} \perp X_{t}^{u} .
$$

\square If δ_{1} is constrained to depend on just contemporaneous values, then we have the classical Taylor rule given that $v_{t}=\delta_{12}^{\prime} X_{t}^{u}$ can be interpreted as an "orthogonal (monetary policy) shock". It is named "Macro Model".
\square If δ_{1} is unconstrained: introducing lagged values, they hope to catch relevant information to forecast inflation or output. They interpret that specification as a forward-looking version of the Taylor rule ("Macro Lag Model").

No-Arbitrage, Stochastic Discount Factors and Pricing Formulas

\square To develop the affine term structure model, they use the assumption of noarbitrage (Harrison and Kreps, 1979) to guarantee the existence of a (positive and not unique in general) Stochastic Discount Factor $M_{t, t+1}$ (or pricing kernel) such that the price of any asset V_{t} that does not pay any dividend at $t+1$ satisfies:

$$
V_{t}=E_{t}^{\mathbb{P}}\left[M_{t, t+1} V_{t+1}\right] .
$$

\square If we consider at t a zero-coupon bond maturing at $t+1$ we have:

$$
B(t, t+1)=E_{t}^{\mathbb{P}}\left[M_{t, t+1}\right]=\exp \left(-r_{t}\right)
$$

\square More generally, for any payoff V_{t+h} at $t+h$, we have :

$$
\begin{aligned}
V_{t} & =E_{t}^{\mathbb{P}}\left[M_{t, t+h} V_{t+h}\right], \\
& =E_{t}^{\mathbb{P}}\left[M_{t, t+1} \ldots M_{t+h-1, t+h} V_{t+h}\right] .
\end{aligned}
$$

\square Now, it is well known from asset pricing theory that, under the absence of arbitrage opportunity, there exist equivalent (to \mathbb{P}) probability measures under which asset prices, evaluated with respect to some numeraire N_{t}, are martingales.
\square A numeraire is defined as a non-dividend-paying price process $N=\left(N_{t}, t \geq 0\right)$ with $N_{0}=1$. In other words, N is a stochastic process such that, for every $T>t$:

$$
\begin{aligned}
& N_{t}=E_{t}^{\mathbb{P}}\left[M_{t, T} N_{T}\right], \text { and } E_{0}^{\mathbb{P}}\left[M_{0, T} N_{T}\right]=1, \text { where } \\
& M_{t, T}=M_{t, t+1} \cdot \ldots \cdot M_{T-1, T} .
\end{aligned}
$$

\square
The process $N^{*}=\left(N_{t} M_{0, t}, t \geq 0\right)$ is therefore a \mathbb{P}-martingale with unitary value in $t=0$, and if \mathbb{Q} is the probability (equivalent to \mathbb{P}) defined by the sequence of conditional densities:

$$
\frac{d \mathbb{Q}_{t, t+1}}{d \mathbb{P}_{t, t+1}}=\frac{N_{t+1} M_{t, t+1}}{N_{t}}>0, \quad E_{t}^{\mathbb{P}}\left[\frac{d \mathbb{Q}_{t, t+1}}{d \mathbb{P}_{t, t+1}}\right]=1
$$

then, a price process V_{t} is such that V_{t} / N_{t} is a \mathbb{Q}-martingale:

$$
V_{t}=E_{t}^{\mathbb{P}}\left[M_{t, t+1} V_{t+1}\right] \Longleftrightarrow \frac{N_{t}}{N_{t}} V_{t}=E_{t}^{\mathbb{P}}\left[\frac{N_{t+1}}{N_{t+1}} M_{t, t+1} V_{t+1}\right]
$$thus:

$$
\frac{V_{t}}{N_{t}}=E_{t}^{\mathbb{P}}\left[\frac{N_{t+1} M_{t, t+1}}{N_{t}} \frac{V_{t+1}}{N_{t+1}}\right]=E_{t}^{\mathbb{Q}}\left[\frac{V_{t+1}}{N_{t+1}}\right]
$$

\square If we consider as numeraire the money-market account $N_{t}=\exp \left(r_{0}+\ldots+\right.$ $\left.r_{t-1}\right)=\left(A_{0, t}\right)^{-1}$, where $A_{0, t}=E_{0}\left(M_{0,1}\right) \cdots E_{t-1}\left(M_{t-1, t}\right)$, the associated equivalent probability $\mathbb{Q}_{t, t+1}$ has a one-period conditional density, with respect to $\mathbb{P}_{t, t+1}$, given by :

$$
\frac{d \mathbb{Q}_{t, t+1}}{d \mathbb{P}_{t, t+1}}=\frac{A_{0, t} M_{t, t+1}}{A_{0, t+1}}=\frac{M_{t, t+1}}{E_{t}\left(M_{t, t+1}\right)} .
$$

and it is called Risk-Neutral probability measure.
\square This means that the pricing formula $V_{t}=E_{t}^{\mathbb{P}}\left[M_{t, t+1} V_{t+1}\right]$ can be written:

$$
V_{t}=E_{t}^{\mathbb{P}}\left[\frac{M_{t, t+1}}{E_{t}^{\mathbb{P}}\left[M_{t, t+1}\right]} E_{t}^{\mathbb{P}}\left[M_{t, t+1}\right] V_{t+1}\right]=E_{t}^{\mathbb{Q}}\left[\exp \left(-r_{t}\right) V_{t+1}\right],
$$

where r_{t} is the $(t, t+1)$ short rate, known in t
\square In a general ($T-t$)-period horizon, the conditional (to I_{t}) density of the riskneutral probability $\mathbb{Q}_{t, T}$ with respect to the historical probability $\mathbb{P}_{t, T}$ is given by:

$$
\frac{d \mathbb{Q}_{t, T}}{d \mathbb{P}_{t, T}}=\frac{M_{t, t+1} \cdot \ldots \cdot M_{T-1, T}}{E_{t}\left(M_{t, t+1}\right) \cdot \ldots \cdot E_{T-1}\left(M_{T-1, T}\right)}
$$More generally, for any payoff V_{t+h} at $t+h$, we have :

$$
V_{t}=E_{t}^{\mathbb{Q}}\left[\exp \left(-r_{t}-\ldots-r_{t+h-1}\right) V_{t+h}\right]
$$In the case of a ZCB maturing at $t+h$ we have:

$$
\begin{aligned}
B(t, t+h) & =E_{t}^{\mathbb{P}}\left[M_{t, t+h}\right]=E_{t}^{\mathbb{P}}\left[M_{t, t+1} B(t+1, t+h)\right] \\
& =E_{t}^{\mathbb{Q}}\left[\exp \left(-r_{t}-\ldots-r_{t+h-1}\right)\right]=E_{t}^{\mathbb{Q}}\left[\exp \left(-r_{t}\right) B(t+1, t+h)\right]
\end{aligned}
$$

The Exponential-Affine Stochastic Discount Factor and the Yield Curve

\square The authors assume the following exponential-affine (in X_{t}) Stochastic Discount
Factor:

$$
\begin{aligned}
M_{t, t+1}= & \exp \left[-r_{t}-\lambda_{t}^{\prime} \varepsilon_{t+1}-\frac{1}{2} \lambda_{t}^{\prime} \lambda_{t}\right]=\exp \left[-\delta_{0}-\delta_{1}^{\prime} X_{t}-\lambda_{t}^{\prime} \varepsilon_{t+1}-\frac{1}{2} \lambda_{t}^{\prime} \lambda_{t}\right] \\
& \text { where } \lambda_{t}=\lambda_{0}+\lambda_{1} X_{t}
\end{aligned}
$$From $B(t, t+h)=E_{t}^{\mathbb{P}}\left[M_{t, t+1} B(t+1, t+h)\right]$ we obtain:

$$
\begin{aligned}
& B(t, t+h)=\exp \left[A_{h}+B_{h}^{\prime} X_{t}\right], \text { where } A_{h} \text { and } B_{h} \text { are: } \\
& A_{h+1}=A_{h}+B_{h}^{\prime}\left(\mu-\Sigma \lambda_{0}\right)+\frac{1}{2} B_{h}^{\prime} \Sigma \Sigma^{\prime} B_{h}-\delta_{0}, \text { where } A_{1}=-\delta_{0} \\
& B_{h+1}^{\prime}=B_{h}^{\prime}\left(\Phi-\Sigma \lambda_{1}\right)-\delta_{1}, \text { where } B_{1}=-\delta_{1}
\end{aligned}
$$The yield-to-maturity formula (the affine yield curve) is therefore:

$$
R(t, t+h)=-\frac{1}{h} \ln [B(t, t+h)]=-\frac{A_{h}}{h}-\frac{B_{h}^{\prime} X_{t}}{h},
$$Parameters in λ_{0} and λ_{1} associated to lagged macro-variables are set equal to zero. This means that, they consider:

$$
\lambda_{t}=\lambda_{0}+\lambda_{1}\left[f_{t}^{o \prime}, f_{t}^{u \prime}\right]^{\prime}
$$

In addition, they assume the (5×5) matrix λ_{1} block-diagonal.

5.3.4 Estimation Procedure

\square They estimate three type of models : a) $X_{t}=f_{t}^{u}$ (only latent variables); b)
"Macro Model" (no lags); c) "Macro Lag Model";
\square They follow a two-step consistent estimation procedure, which is adapted to forecast with models characterized by several parameters.
\square They first estimate by OLS the parameters in the $\operatorname{VAR}(12)$ dynamics of f_{t}^{o}, and the parameters $\left(\delta_{0}, \delta_{11}\right)$ in the short rate dynamics (exploiting the fact that $\left.X_{t}^{u} \perp X_{t}^{o}\right)$.Then, keeping fixed that parameters to the estimated values, they estimate the remaining parameters, namely $\left(\lambda_{0}, \lambda_{1}, \delta_{12}\right)$, using the Chen-Scott (1993) inversion procedure.
\square Let us take a look now to what happens to yield curve factor loadings associated to latent and macro variables.

In other words: do the three latent factors keep their role of level, slope and curvature ? How macro variables affect the yield curve shape ?

\square We observe that, in the "Macro Model", the three latent factors keep their role of LEVEL, SLOPE and (almost) CURVATURE.
\square Inflation and Real Activity factors (at date t) affect yields (at date t) almost uniformly over the maturity spectrum.What about the "Macro Lag Model" ?

\square Now, in the "Macro Lag Model", Inflation and Real Activity (contemporaneous) factors have little impact on the yield curve for $h>30$ months.
\square Thus, "Macro Model" and "Macro Lag Model" imply different impact of macro factors on the yield curve.
\square The Forward Looking Taylor Rule (with lags) $r_{t}=\delta_{0}+\delta_{1}^{\prime} X_{t}$ show that lags are important in determining yield variations
\rightarrow Contemporaneous shocks have less of an impact on the yields.
\square Question 1 : are no-arbitrage restrictions and/or macro variables useful for yields out-of-sample forecasts ?
\square Question 2 : Are the three latent factors (level, slope, curvature) explained/linked to the macro variables (inflation and economic activity) ?

5.3.5 Results

Imposing no-arbitrage restrictions improves yields out-of-sample forecasts w.r.t. a VAR ("Yield only No-arbitrage ATSM" dominates "Yield only VAR model").These forecasts can be further improved incorporating macro factors into theYield only No-arbitrage ATSM (" Macro Model" dominates "Macro Lag Model").
\square
They find that macro factors explain a significant portion (up to 85\%) of movements in the short and middle parts of the yield curve, but explain only around 40% of movements at the long end of the yield curve.
\square The effects of inflation shocks are strongest at the short end of the yield curve.
\square A significant proportion of the "level" and "slope" factors are attributed to macro factors, particularly to inflation. However, the level effect qualitatively survives largely intact when macro factors are added to a term structure model.

Table 11
Companison of Yiedds-Oniy and macro factors

Dependent variable	Independent vaniables					
	Inflation	Real activity	Unobs 1	Unobs 2	Unobs 3	Adj R^{2}
Panel A : Regressions on macro factors						
Unobs 1	0.4625	0.0726				0.2180
"1eve1"	(0.0735)	(0.0860)				
Unobs 2	0.6707	0.1890				0.4902
"spread"	(0.0716)	(0.0611)				
Unobs 3	0.0498	0.1794				0.0343
"curvature"	(0.0629)	(0.0714)				
Panel B: Regressions on factors from macro madel						
Unobs 1	0.1118	0.0307	0.9507	0.0174	0.0038	0.9971
	(0.0054)	(0.0056)	(0.0055)	(0.0056)	(0.0047)	
Unobs 2	0.9364	0.1026	0.0199	0.7624	0.0279	0.9981
	(0.0037)	(0.0037)	(0.0042)	(0.0032)	(0.0029)	
Unobs 3	0.0427	0.1238	0.1656	0.1455	0.9071	0.9256
	(0.0262)	(0.0260)	(0.0289)	(0.0241)	(0.0233)	
Panel C: Regressions on factors from macro lag model						
Unobs 1	0.0580	0.0207	1.0248	0.0035	0.0058	0.9979
	(0.0049)	(0.0040)	(0.0044)	(0.0047)	(0.0036)	
Unobs 2	0.7069	0.1132	0.2955	0.5700	0.1306	0.8715
	(0.0393)	(0.0313)	(0.0356)	(0.0376)	(0.0315)	
Unobs 3	0.1112	0.0081	0.2059	0.0228	0.8119	0.7470
	(0.0458)	(0.0386)	(0.0507)	(0.0365)	(0.0424)	

Regressions of the latent factors from the Yields-Only model with only latent factors (dependent variables) onto the macro factors and latent factors from the Macro and Macro Lag model (independent vaniables) A11 factors are nommalized, and standard errors, produced using 3 Newey West (1987) 1ags, are in parentheses. Panel A lists coefficients from a regression of the Yields-Only latent factors onto only macro factors. Panel B lists coefficients from a regression of Yiedds-Only latent factors on the macro and latent factors from the Macro model with only contemporaneous inflation and real activity in the short rate equation. Panel C lists coefficients from a regression of Yields-Only latent factors on themacro and latent factors from the Macro Lag model with contemporaneous inflation and real activity and 11 lags of inflation and real activity in the short rate equation.

Fixed Income and Credit Risk

Lecture 5 - Part II

Discrete - Time Univariate

Positive Term Structure Models

Outline of Lecture 5 - Part II

5.4 The Autoregressive Gamma of order p Process
5.4.1 The Non-centered Gamma Distribution
5.4.2 The Autoregressive Gamma of order 1 Process
5.4.3 The Autoregressive Gamma of order p Process
5.5 Univariate ARG(1) Factor-Based Term Structure Models
5.5.1 Historical Dynamics
5.5.2 The Stochastic Discount Factor
5.5.3 The Affine Positive Term Structure of Interest Rates
5.5.4 Risk-Neutral Dynamics
5.6 Univariate $\operatorname{ARG}(p)$ Factor-Based Term Structure Models
5.6.1 Historical Dynamics
5.6.2 The Stochastic Discount Factor
5.6.3 The Affine Positive Term Structure of Interest Rates
5.6.4 Risk-Neutral Dynamics

5.4 The Autoregressive Gamma of order p Process

5.4.1 The Non-centered Gamma Distribution

\square We say that the positive random variable Y is Gamma with parameters $\nu>0$ and $\mu>0$, i.e. $Y \sim \gamma(\nu, \mu)$, if and only if its probability density function is:

$$
\begin{aligned}
& f_{Y}(y ; \nu, \mu)=\frac{\exp (-y / \mu) y^{\nu-1}}{\Gamma(\nu) \mu^{\nu}} \mathbb{I}_{\{y>0\}} \\
& \text { where } \Gamma(x)=\int_{0}^{+\infty} t^{x-1} e^{-t} d t, x \in \mathbb{C}, \operatorname{Re}(x)>0 \\
& \Gamma(x)=\Gamma(x-1)(x-1) ; \Gamma(x)=(x-1) \text { ! if } x \text { is a positive integer. }
\end{aligned}
$$$\nu$ is the shape (or degree of freedom) parameter, μ is the scale parameter.We have that:

- $E[Y]=\nu \mu$ and $V[Y]=\nu \mu^{2}$ (mean and variance);
- $E[\exp (u Y)]=\left(\frac{1}{1-u \mu}\right)^{\nu}$, for $u<1 / \mu$ (Laplace transform);
- $Y \sim \gamma(\nu, \mu) \Longleftrightarrow \frac{Y}{\mu} \sim \gamma(\nu, 1)$ (scaling).
\square We say that the positive random variable Y is Non-centered Gamma with parameters $\nu>0, \beta>0$ and $\mu>0$, i.e. $Y \sim \widetilde{\gamma}(\nu, \beta, \mu)$, if and only if there exists a random variable $Z \sim \mathcal{P}(\beta)$ such that:

$$
\left\{\begin{array} { l }
{ \frac { Y } { \mu } | Z \sim \gamma (\nu + Z , 1) , \nu > 0 , } \\
{ Z \sim \mathcal { P } (\beta) , \beta > 0 , \mu > 0 , }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
Y \mid Z \sim \gamma(\nu+Z, \mu), \nu>0 \\
Z \sim \mathcal{P}(\beta), \beta>0, \mu>0
\end{array}\right.\right.
$$

where β is the non-centrality parameter.
\square Let us remember that a discrete non-negative random variable Z is Poisson with parameter $\theta>0$, i.e. $Z \sim \mathcal{P}(\theta)(\theta>0)$, if and only if:

$$
\begin{aligned}
& \mathbb{P}[Z=z]=\frac{\exp (-\beta) \beta^{z}}{z!}, z \in\{0,1,2, \ldots\} \\
& E[Z]=V[Z]=\beta \\
& E[\exp (u Z)]=\exp \left[\beta\left(e^{u}-1\right)\right]
\end{aligned}
$$The p.d.f. of $Y \sim \widetilde{\gamma}(\nu, \beta, \mu)$ is given by:

$$
\begin{aligned}
f_{Y}(y ; \nu, \beta, \mu) & =\sum_{z=0}^{+\infty} f_{Y}(y \mid Z=z ; \nu, \mu) \times f_{Z}(z ; \beta) \\
& =\sum_{z=0}^{+\infty}\left[\frac{\exp (-y / \mu) y^{\nu+z-1}}{\Gamma(\nu+z) \mu^{\nu+z}} \times \frac{\exp (-\beta) \beta^{z}}{z!}\right] \mathbb{I}_{\{y>0\}}
\end{aligned}
$$

\square We have that:

- $E[Y]=\nu \mu+\beta \mu$ and $V[Y]=\nu \mu^{2}+2 \mu^{2} \beta$ (mean and variance);
- $E[\exp (u Y)]=\exp \left[-\nu \log (1-u \mu)+\beta \frac{u \mu}{1-u \mu}\right]$, for $u<1 / \mu$
(Laplace transform);
- exercise!

5.4.2 The Autoregressive Gamma of order 1 Process

\square The Autoregressive Gamma of order one $\left[\mathrm{ARG}(1)\right.$] process $\left\{x_{t}\right\}$ (say) is the exact discrete-time equivalent of the square-root process introduce in the continuoustime term structure literature by Cox, Ingersoll and Ross (1985). This (positive valued) process can be defined as:

$$
\begin{align*}
& \left.\frac{x_{t+1}}{\mu} \right\rvert\, z_{t+1} \sim \gamma\left(\nu+z_{t+1}, 1\right), \nu>0 \tag{3}\\
& z_{t+1} \mid x_{t} \sim \mathcal{P}\left(\rho x_{t} / \mu\right), \quad \rho>0, \mu>0, \rho=\beta \mu
\end{align*}
$$

\square where $\gamma($.$) denotes the Gamma distribution, \mu$ is the scale parameter, ν is the degree of freedom, ρ is the correlation (AR) parameter, and z_{t} is the mixing variable.
\square This means that the conditional probability density function $f\left(x_{t+1} \mid x_{t} ; \mu, \nu, \rho\right)$ (say) of the $\operatorname{ARG}(1)$ process is the following mixture of Gamma densities with Poisson weights:

$$
f\left(x_{t+1} \mid x_{t} ; \mu, \nu, \rho\right)=\sum_{k=0}^{+\infty}\left[\frac{1}{\mu} \frac{e^{-\frac{x_{t+1}}{\mu}}\left(\frac{x_{t+1}}{\mu}\right)^{\nu+k-1}}{\Gamma(\nu+k)} \times \frac{\left(\frac{\rho x_{t}}{\mu}\right)^{k}}{k!} e^{-\frac{\rho x_{t}}{\mu}}\right] \mathbb{I}_{\left\{x_{t+1}>0\right\}}
$$

$$
\begin{equation*}
\text { where } \rho>0, \mu>0, \nu>0 \tag{4}
\end{equation*}
$$Its conditional Laplace transform has the following exponential-affine (in x_{t}) form [see Gourieroux and Jasiak (2006) for details; exercise!]:

$$
\begin{equation*}
E\left[\exp \left(u x_{t+1}\right) \mid \underline{x_{t}}\right]=\exp \left[\frac{\rho u}{1-u \mu} x_{t}-\nu \log (1-u \mu)\right] . \tag{5}
\end{equation*}
$$

The conditional mean and variance are respectively given by

- $E\left(x_{t+1} \mid x_{t}\right)=\nu \mu+\rho x_{t}$,
- and $V\left(x_{t+1} \mid x_{t}\right)=\nu \mu^{2}+2 \mu \rho x_{t}$.
- exercise!
\square Consequently, the process $\left\{x_{t}\right\}$ has the following weak $\operatorname{AR}(1)$ representation:

$$
\begin{equation*}
x_{t+1}=\nu \mu+\rho x_{t}+\varepsilon_{t+1}, \tag{6}
\end{equation*}
$$where $\left\{\varepsilon_{t}\right\}$ is a conditionally heteroskedastic martingale difference

$\left(\Rightarrow E\left(\varepsilon_{t+1} \mid \varepsilon_{t}\right)=0\right)$, whose conditional variance is $V\left(\varepsilon_{t+1} \mid \varepsilon_{t}\right)=\nu \mu^{2}+2 \mu \rho x_{t}$ (exercise!).
\square The process is stationary (of second order) if and only if $\rho<1$.
\square In this case, the process $\left\{\varepsilon_{t}\right\}$ has finite unconditional variance given by:

$$
V\left(\varepsilon_{t}\right)=\nu \mu^{2}+2 \nu \mu^{2} \frac{\rho}{1-\rho}(\text { exercise! })
$$

\square The unconditional mean and variance of $\left\{x_{t}\right\}$ are respectively given by:

- $E\left(x_{t}\right)=\frac{\nu \mu}{1-\rho}$,
- and $V\left(x_{t}\right)=\frac{\nu \mu^{2}}{(1-\rho)^{2}}$.
- exercise!

> FIGURE $1-$ Conditional pdf of $\operatorname{ARG}(1)$ $\mathrm{mu}=0.0012, \mathrm{nu}=0.5, y-\{t-1\}=0.02$ rho $=0.6,0.8,0.9,0.99$

FIGURE 2 - Conditional pdf of ARG(1);
rho $=0.8$, nu $=0.5, y _\{t-1\}=0.02$;
$\mathrm{mu}=0.001,0.005,0.01,0.05$

FIGURE 3 - Conditional pdf of ARG(1);
rho $=0.8, \mathrm{mu}=0.001, \mathrm{y}-\{\mathrm{t}-1\}=0.02$;
$n u=0.5,1,1.5,2$

5.4.3 The Autoregressive Gamma of order p Process

\square The Autoregressive Gamma of order $p[\operatorname{ARG}(p)]$ process can be defined as:

$$
\begin{align*}
& \left.\frac{x_{t+1}}{\mu} \right\rvert\, z_{t+1} \sim \gamma\left(\nu+z_{t+1}, 1\right), \nu>0 \\
& z_{t+1} \left\lvert\, \underline{x_{t}} \sim \mathcal{P}\left(\frac{\rho_{1} x_{t}+\ldots+\rho_{p} x_{t-p+1}}{\mu}\right)\right., \quad \rho_{i}=\beta_{i} \mu, \quad i \in\{1, \ldots, p\} . \tag{7}
\end{align*}
$$

\square With the notation $X_{t}=\left(x_{t}, \ldots, x_{t-p+1}\right)^{\prime}$ and $\rho=\left(\rho_{1}, \ldots, \rho_{p}\right)^{\prime}$ we have that the conditional Laplace transform of the $\operatorname{ARG}(p)$ process is (exercise!):

$$
\begin{equation*}
E\left[\exp \left(u x_{t+1}\right) \mid \underline{x_{t}}\right]=\exp \left[\frac{u}{1-u \mu} \rho^{\prime} X_{t}-\nu \log (1-u \mu)\right] \tag{8}
\end{equation*}
$$and the p.d.f. $f\left(x_{t+1} \mid X_{t} ; \mu, \nu, \rho\right)$ (say) is given by:

$$
\begin{equation*}
f\left(x_{t+1} \mid X_{t} ; \mu, \nu, \rho\right)=\sum_{k=0}^{+\infty}\left[\frac{1}{\mu} \frac{e^{-\frac{x_{t+1}}{\mu}}\left(\frac{x_{t+1}}{\mu}\right)^{\nu+k-1}}{\Gamma(\nu+k)} \times \frac{\left(\frac{\rho^{\prime} X_{t}}{\mu}\right)^{k}}{k!} e^{-\frac{\rho^{\prime} X_{t}}{\mu}}\right] \mathbb{I}_{\left\{x_{t+1}>0\right\}} \tag{9}
\end{equation*}
$$

It easily seen that the conditional mean and variance of x_{t+1}, given \underline{x}_{t}, are respectively given by

- $E\left(x_{t+1} \mid \underline{x_{t}}\right)=\nu \mu+\rho^{\prime} X_{t}$
- and $V\left(x_{t+1} \mid \underline{x_{t}}\right)=\nu \mu^{2}+2 \mu \rho^{\prime} X_{t}$.
- exercise!
\square
This means that, the $\operatorname{ARG}(p)$ process $\left\{x_{t}\right\}$ has the weak $\operatorname{AR}(p)$ representation:

$$
\begin{equation*}
x_{t+1}=\nu \mu+\rho^{\prime} X_{t}+\xi_{t+1} \tag{10}
\end{equation*}
$$

where $\left\{\xi_{t}\right\}$ is a conditionally heteroskedastic martingale difference, whose conditional variance is $V\left(\xi_{t+1} \mid \underline{\xi_{t}}\right)=\nu \mu^{2}+2 \mu \rho^{\prime} X_{t}$ (exercise!).The process $\left\{x_{t}\right\}$ is stationary if and only if $\rho^{\prime} e<1\left[\right.$ where $\left.e=(1, \ldots, 1) \in \mathbb{R}^{p}\right]$.In this case, $\left\{\xi_{t}\right\}$ has finite unconditional variance given by:
$V\left(\xi_{t}\right)=\nu \mu^{2}+2 \nu \mu^{2} \frac{\rho^{\prime} e}{1-\rho^{\prime} e}($ exercise! $)$.
\square The unconditional mean of $\left\{x_{t}\right\}$ is given by $E\left(x_{t}\right)=\frac{\nu \mu}{1-\rho^{\prime} e}$ (exercise!).

5.5 Univariate ARG(1) Factor-Based Term Structure Models

5.5.1 The Historical Dynamics

We consider our discrete-time economy between dates 0 and T.x_{t} is our factor or a state vector, and it may be observable, partially observable or unobservable by the econometrician.\square Gaussian $\operatorname{VAR}(p)$ ATSMs do not (theoretically) guarantee that the yield-tomaturity formula generate positive yields for any date t, residual maturity h, any parameter values and realization of the factor x_{t}.
\square
We are going to see now that, if assume that the factor x_{t} follows an Autoregressive Gamma of order p Process (with a well specified SDF), then :

- the term structure of interest rates will be affine in the factor x_{t} (or X_{t} if $p>1)$.
- any model implied yield-to-maturity will be strictly positive.
\square For ease of exposition (and for reason of time) we will consider only the case of a scalar and latent factor.In this section we consider $p=1$ and then, in the next one, we will assume $p>1$.Let us assume that the scalar latent factor x_{t} has a dynamics, under the historical
probability \mathbb{P}, described by an $A R G(1)$ process.
\square
This means that, under \mathbb{P}, the Laplace transform of x_{t+1}, conditionally to x_{t}, is given by:

$$
\begin{aligned}
E\left[\exp \left(u x_{t+1}\right) \mid \underline{x_{t}}\right] & =\exp \left[\frac{\rho u}{1-u \mu} x_{t}-\nu \log (1-u \mu)\right] \\
& =\exp \left[a(u ; \rho, \mu) x_{t}+b(u ; \nu, \mu)\right]
\end{aligned}
$$

\square We have seen in the previous sections that this process has the following weak positive $A R(1)$ representation:

$$
x_{t+1}=\nu \mu+\rho x_{t}+\varepsilon_{t+1}
$$

\square
where $\left\{\varepsilon_{t}\right\}$ is a conditionally heteroskedastic martingale difference:

$$
-\Rightarrow E\left(\varepsilon_{t+1} \mid \varepsilon_{t}\right)=0
$$

- whose conditional variance is $V\left(\varepsilon_{t+1} \mid \varepsilon_{t}\right)=\nu \mu^{2}+2 \mu \rho x_{t}$,and whose conditional Laplace transform is given by:

$$
\begin{aligned}
E\left[\exp \left(u \varepsilon_{t+1}\right) \mid \underline{\varepsilon_{t}}\right] & =E\left\{\exp \left[u\left(x_{t+1}-\nu \mu-\rho x_{t}\right) \mid \underline{x_{t}}\right]\right\} \\
& =\exp \left[a(u ; \rho, \mu) x_{t}+b(u ; \nu, \mu)-u\left(\nu \mu+\rho x_{t}\right)\right] \\
& =\exp \left[(a(u ; \rho, \mu)-u \rho) x_{t}+b(u ; \nu, \mu)-u \nu \mu\right]
\end{aligned}
$$

\square This result is going to be useful in the construction of our one-period exponentialaffine SDF $M_{t, t+1}$.

5.5.2 The Stochastic Discount Factor

\square The one-period SDF $M_{t, t+1}$ is assumed to be given by:

$$
\begin{aligned}
M_{t, t+1}=\exp [-\beta & \left.-\alpha x_{t}+\Gamma_{t} \varepsilon_{t+1}\right] \\
& \times \exp \left[-a\left(\Gamma_{t} ; \rho, \mu\right) x_{t}-b\left(\Gamma_{t} ; \nu, \mu\right)+\Gamma_{t}\left(\nu \mu+\rho x_{t}\right)\right]
\end{aligned}
$$

\square with stochastic risk-correction coefficient given by $\Gamma_{t}=\gamma_{o}+\gamma x_{t}$.
\square It is built in such a way that:
$-\frac{d \mathbb{Q}_{t, t+1}}{d \mathbb{P}_{t, t+1}}=\frac{M_{t, t+1}}{E_{t}\left[M_{t, t+1}\right]}$ is a density : $\frac{M_{t, t+1}}{E_{t}\left[M_{t, t+1}\right]}>0$ and $E_{t}\left[\frac{M_{t, t+1}}{E_{t}\left[M_{t, t+1}\right]}\right]=1$;

- the no-arbitrage restriction is explicitly satisfied : $E_{t}\left[M_{t, t+1}\right]=\exp \left(-r_{t}\right)$ if and only if $r_{t}=\beta+\alpha x_{t}$.
\square A useful Lemma - Let us consider the functions:

$$
a(u ; \rho, \mu)=\frac{\rho u}{1-u \mu} \text { and } b(u ; \nu, \mu)=-\nu \log (1-u \mu) ;
$$

then, we have:
\square Lemma :

$$
\begin{aligned}
& a(u+g ; \rho, \mu)-a(g ; \rho, \mu)=a\left(u ; \rho^{*}, \mu^{*}\right) \\
& b(u+g ; \nu, \mu)-b(g ; \nu, \mu)=b\left(u ; \nu, \mu^{*}\right) \\
& \text { with } \rho^{*}=\frac{\rho}{(1-g \mu)^{2}}, \mu^{*}=\frac{\mu}{1-g \mu},
\end{aligned}
$$

[Proof: exercise] and we will consider the case $g=\Gamma_{t}$.

5.5.3 The Affine Positive Term Structure of Interest Rates

The price at date t of the zero-coupon bond with time to maturity h is :$$
B(t, t+h)=\exp \left(c_{h} x_{t}+d_{h}\right), \quad h \geq 1,
$$

\square where c_{h} and d_{h} satisfies, for $h \geq 1$, the recursive equations:

$$
\left\{\begin{aligned}
c_{h} & =-\alpha+\left[a\left(c_{h-1}+\Gamma_{t} ; \rho, \mu\right)-a\left(\Gamma_{t} ; \rho, \mu\right)\right] \\
& =-\alpha+a\left(c_{h-1} ; \rho^{*}, \mu^{*}\right) \\
d_{h} & =-\beta+\left[b\left(c_{h-1}+\Gamma_{t} ; \nu, \mu\right)-b\left(\Gamma_{t} ; \nu, \mu\right)\right]+d_{h-1} \\
& =-\beta+b\left(c_{h-1} ; \nu, \mu^{*}\right)+d_{h-1}
\end{aligned}\right.
$$

\square with initial conditions $c_{0}=0, d_{0}=0$ (or $c_{1}=-\alpha, d_{1}=-\beta$). If $x_{t}=r_{t}$, then $c_{1}=-1$ and $d_{1}=0$.The (continuously compounded) affine term structure of interest rates is:

$$
R(t, t+h)=-\frac{1}{h} \log B(t, t+h)=-\frac{c_{h}}{h} x_{t}-\frac{d_{h}}{h}, \quad h \geq 1
$$

\square positivity of the yields : Since $r_{t}=R(t, t+1)=\beta+\alpha x_{t}$, and since x_{t} is a positive process, the short rate process will be positive as soon as β and α are nonnegative.
\square The positivity of r_{t} implies that of $R(t, t+h)$, at any date t and time to maturity h, because $R(t, h)=-\frac{1}{h} \log E_{t}^{\mathbb{Q}}\left[\exp \left(-r_{t}-\ldots-r_{t+h-1}\right)\right]$.

This is the discrete-time equivalent of the (continuous-time affine) Cox-Ingersoll-
Ross (1985) model.

5.5.4 The Positive Risk-Neutral Dynamics

\square The risk-neutral Laplace transform of x_{t+1}, conditionally to $\underline{x_{t}}$, is given by:

$$
\begin{aligned}
& E_{t}^{\mathbb{Q}}\left[\exp \left(u x_{t+1}\right)\right]=E_{t}\left[\frac{M_{t, t+1}}{E_{t}\left(M_{t, t+1}\right)} \exp \left(u x_{t+1}\right)\right] \\
= & \exp \left\{\left[a\left(u+\Gamma_{t} ; \rho, \mu\right)-a\left(\Gamma_{t} ; \rho, \mu\right)\right] x_{t}+\left[b\left(u+\Gamma_{t} ; \nu, \mu\right)-b\left(\Gamma_{t} ; \nu, \mu\right)\right]\right\} \\
= & \exp \left[a\left(u ; \rho^{*}, \mu^{*}\right) x_{t}+b\left(u ; \nu, \mu^{*}\right)\right]
\end{aligned}
$$

\square Under the risk-neutral probability \mathbb{Q}, x_{t+1} is a positive weak $\operatorname{AR}(1)$ process of the following type:

$$
x_{t+1}=\nu \mu^{*}+\rho^{*} x_{t}+\eta_{t+1},
$$

\square with $\rho^{*}=\frac{\rho}{\left(1-\Gamma_{t} \mu\right)^{2}}>0$ and $\mu^{*}=\frac{\mu}{1-\Gamma_{t} \mu}>0$, and where η_{t+1} is such that $E\left(\eta_{t+1} \mid \eta_{t}\right)=0$ and $V\left(\eta_{t+1} \mid \eta_{t}\right)=\nu\left(\mu^{*}\right)^{2}+2 \mu^{*} \rho^{*} x_{t}$.

5.6 Univariate ARG(p) Factor-Based Term Structure Models

5.6.1 The Historical Dynamics

\square Let us assume that the scalar latent factor x_{t} has a dynamics, under the historical probability \mathbb{P}, described by an $\operatorname{ARG}(p)$ process.
\square This means that, under \mathbb{P}, the Laplace transform of x_{t+1}, conditionally to $\underline{x_{t}}$, is given by:

$$
\begin{aligned}
E\left[\exp \left(u x_{t+1}\right) \mid \underline{x_{t}}\right] & =\exp \left[\frac{u}{1-u \mu}\left(\rho_{1} x_{t}+\ldots+\rho_{p} x_{t-p+1}\right)-\nu \log (1-u \mu)\right] \\
& =\exp \left[\frac{u}{1-u \mu} \rho^{\prime} X_{t}-\nu \log (1-u \mu)\right] \\
& =\exp \left[a(u ; \rho, \mu)^{\prime} X_{t}+b(u ; \nu, \mu)\right]
\end{aligned}
$$

\square We seen in the previous sections that this process has the following weak positive
$\mathrm{AR}(p)$ representation:

$$
x_{t+1}=\nu \mu+\rho^{\prime} X_{t}+\varepsilon_{t+1},
$$

\square
where $\left\{\varepsilon_{t}\right\}$ is a conditionally heteroskedastic martingale difference:

$$
-\Rightarrow E\left(\varepsilon_{t+1} \mid \varepsilon_{t}\right)=0
$$

- whose conditional variance is $V\left(\varepsilon_{t+1} \mid \varepsilon_{t}\right)=\nu \mu^{2}+2 \mu \rho^{\prime} X_{t}$,and whose conditional Laplace transform is given by:

$$
\begin{aligned}
E\left[\exp \left(u \varepsilon_{t+1}\right) \mid \underline{\varepsilon_{t}}\right] & =E\left\{\exp \left[u\left(x_{t+1}-\nu \mu-\rho^{\prime} X_{t}\right) \mid \underline{x_{t}}\right]\right\} \\
& =\exp \left[a(u ; \rho, \mu)^{\prime} X_{t}+b(u ; \nu, \mu)-u\left(\nu \mu+\rho^{\prime} X_{t}\right)\right] \\
& =\exp \left[(a(u ; \rho, \mu)-u \rho)^{\prime} X_{t}+b(u ; \nu, \mu)-u \nu \mu\right]
\end{aligned}
$$

5.6.2 The Stochastic Discount Factor

\square The one-period SDF $M_{t, t+1}$ is assumed to be given by:

$$
\begin{aligned}
M_{t, t+1}=\exp [-\beta & \left.-\alpha^{\prime} X_{t}+\Gamma_{t} \varepsilon_{t+1}\right] \\
& \times \exp \left[-a\left(\Gamma_{t} ; \rho, \mu\right)^{\prime} X_{t}-b\left(\Gamma_{t} ; \nu, \mu\right)+\Gamma_{t}\left(\nu \mu+\rho^{\prime} X_{t}\right)\right]
\end{aligned}
$$

\square with stochastic risk-correction coefficient given by $\Gamma_{t}=\gamma_{o}+\gamma^{\prime} X_{t}$.
\square It is built in such a way that:
$-\frac{d \mathbb{Q}_{t, t+1}}{d \mathbb{P}_{t, t+1}}=\frac{M_{t, t+1}}{E_{t}\left[M_{t, t+1}\right]}$ is a density : $\frac{M_{t, t+1}}{E_{t}\left[M_{t, t+1}\right]}>0$ and $E_{t}\left[\frac{M_{t, t+1}}{E_{t}\left[M_{t, t+1}\right]}\right]=1$;

- the no-arbitrage restriction is explicitly satisfied : $E_{t}\left[M_{t, t+1}\right]=\exp \left(-r_{t}\right)$ if and only if $r_{t}=\beta+\alpha^{\prime} X_{t}$.
\square A "generalization" of the Lemma - Let us consider the functions:

$$
a(u ; \rho, \mu)=\frac{u}{1-u \mu} \rho \text { and } b(u ; \nu, \mu)=-\nu \log (1-u \mu)
$$

then, we have:

Lemma :

$$
\begin{aligned}
& a(u+g ; \rho, \mu)-a(g ; \rho, \mu)=a\left(u ; \rho^{*}, \mu^{*}\right) \\
& b(u+g ; \nu, \mu)-b(g ; \nu, \mu)=b\left(u ; \nu, \mu^{*}\right) \\
& \text { with } \rho^{*}=\frac{1}{(1-g \mu)^{2}} \rho, \mu^{*}=\frac{\mu}{1-g \mu}
\end{aligned}
$$

and we will consider the case $g=\Gamma_{t}$.

5.6.3 The Affine Positive Term Structure of Interest Rates

The price at date t of the zero-coupon bond with time to maturity h is :$$
B(t, t+h)=\exp \left(c_{h}^{\prime} X_{t}+d_{h}\right), \quad h \geq 1,
$$

\square where c_{h} and d_{h} satisfies, for $h \geq 1$, the recursive equations:

$$
\left\{\begin{aligned}
c_{h} & =-\alpha+\left[a\left(c_{1, h-1}+\Gamma_{t} ; \rho, \mu\right)-a\left(\Gamma_{t} ; \rho, \mu\right)\right]+\bar{c}_{h-1} \\
& =-\alpha+a\left(c_{1, h-1} ; \rho^{*}, \mu^{*}\right)+\bar{c}_{h-1}, \\
d_{h} & =-\beta+\left[b\left(c_{1, h-1}+\Gamma_{t} ; \nu, \mu\right)-b\left(\Gamma_{t} ; \nu, \mu\right)\right]+d_{h-1} \\
& =-\beta+b\left(c_{1, h-1} ; \nu, \mu^{*}\right)+d_{h-1},
\end{aligned}\right.
$$

\square where $\bar{c}_{h-1}=\left(c_{2, h-1}, \ldots, c_{p, h-1}, 0\right)^{\prime}$, and with initial conditions $c_{0}=0, d_{0}=0$ (or $\left.c_{1}=-\alpha, d_{1}=-\beta\right)$. If $x_{t}=r_{t}$, then $c_{1}=-e_{1}$ and $d_{1}=0$.The affine positive term structure of interest rates is given by:

$$
R(t, t+h)=-\frac{1}{h} \log B(t, t+h)=-\frac{c_{h}^{\prime}}{h} X_{t}-\frac{d_{h}}{h}, \quad h \geq 1
$$

\square positivity of the yields : Since $r_{t}=R(t, t+1)=\beta+\alpha^{\prime} X_{t}$, and since x_{t} is a positive process, the short rate process will be positive as soon as β and α are nonnegative.
\square The positivity of r_{t} implies that of $R(t, t+h)$, at any date t and time to maturity h, because $R(t, t+h)=-\frac{1}{h} \log E_{t}^{\mathbb{Q}}\left[\exp \left(-r_{t}-\ldots-r_{t+h-1}\right)\right]$.
\square This is the discrete-time multiple lags generalization of the (continuous-time affine) Cox-Ingersoll-Ross (1985) model.

5.6.4 The Positive Risk-Neutral Dynamics

\square The risk-neutral Laplace transform of x_{t+1}, conditionally to $\underline{x_{t}}$, is given by:

$$
\begin{aligned}
& E_{t}^{\mathbb{Q}}\left[\exp \left(u x_{t+1}\right)\right]=E_{t}\left[\frac{M_{t, t+1}}{E_{t}\left(M_{t, t+1}\right)} \exp \left(u x_{t+1}\right)\right] \\
= & \exp \left\{\left[a\left(u+\Gamma_{t} ; \rho, \mu\right)-a\left(\Gamma_{t} ; \rho, \mu\right)\right]^{\prime} X_{t}+\left[b\left(u+\Gamma_{t} ; \nu, \mu\right)-b\left(\Gamma_{t} ; \nu, \mu\right)\right]\right\} \\
= & \exp \left[a\left(u ; \rho^{*}, \mu^{*}\right)^{\prime} X_{t}+b\left(u ; \nu, \mu^{*}\right)\right]
\end{aligned}
$$

\square Under the risk-neutral probability \mathbb{Q}, x_{t+1} is a positive weak $\operatorname{AR}(1)$ process of the following type:

$$
x_{t+1}=\nu \mu^{*}+\rho^{* \prime} X_{t}+\eta_{t+1}
$$

\square with $\rho^{*}=\frac{1}{\left(1-\Gamma_{t} \mu\right)^{2}} \rho>0$ and $\mu^{*}=\frac{\mu}{1-\Gamma_{t} \mu}>0$, and where η_{t+1} is such that $E\left(\eta_{t+1} \mid \eta_{t}\right)=0$ and $V\left(\eta_{t+1} \mid \eta_{t}\right)=\nu\left(\mu^{*}\right)^{2}+2 \mu^{*} \rho^{* \prime} X_{t}$.

