Fixed Income and Credit Risk : exercise sheet $\mathrm{n}^{\circ} 05$

Fall Semester 2012

Professor Assistant Program
Fulvio Pegoraro Roberto Marfè MSc. Finance

Exercise ${ }^{\circ} 01$ [Exponential-affine ZCB Pricing Formula].

Let us consider a discrete-time Gaussian term structure model, in which the K-dimensional factor x_{t+1} has an historical dynamics described by the $\operatorname{Gaussian} \operatorname{VAR}(p)$ process:

$$
\begin{aligned}
x_{t+1} & =\nu+\Phi_{1} x_{t}+\ldots+\Phi_{p} x_{t+1-p}+\Sigma \varepsilon_{t+1} \\
& =\nu+\Phi X_{t}+\Sigma \varepsilon_{t+1}
\end{aligned}
$$

where ε_{t+1} is a Gaussian white noise with $\mathcal{N}\left(0, I_{K}\right)$ distribution. We have that ν is a K-dimensional vector, $\Phi=\left[\Phi_{1}, \ldots, \Phi_{p}\right]$ is a $(K, K p)$-dimensional matrix, $X_{t}=\left[x_{t}^{\prime}, \ldots, x_{t+1-p}^{\prime}\right]^{\prime}$ is a $(K p)$ dimensional vector. We also have that Σ is a (K, K) lower triangular matrix : it is the Choleski decomposition of $V_{t}\left[x_{t+1}\right]=\Omega$.

Let us also assume that the stochastic discount factor (SDF) $M_{t, t+1}$ for the period $(t, t+1)$ has the following exponential-affine specification:

$$
M_{t, t+1}=\exp \left[-\beta-\alpha^{\prime} X_{t}+\Gamma_{t}^{\prime} \varepsilon_{t+1}-\frac{1}{2} \Gamma_{t}^{\prime} \Gamma_{t}\right]
$$

where $\Gamma_{t}=\gamma_{o}+\widetilde{\Gamma} X_{t}, \Gamma_{t}=\left[\Gamma_{1, t}, \ldots, \Gamma_{K, t}\right]^{\prime}$. Prove that the price at date t of the zero-coupon bond with time to maturity h is :

$$
B(t, h)=\exp \left(C_{h}^{\prime} X_{t}+D_{h}\right), \quad h \geq 1,
$$

where C_{h} and D_{h} satisfies the recursive equations:

$$
\begin{aligned}
C_{h} & =-\alpha+\widetilde{\Phi}^{\prime} C_{h-1}+(\Sigma \widetilde{\Gamma})^{\prime} C_{1, h-1} \\
& =-\alpha+\widetilde{\Phi}^{*^{\prime}} c_{h-1} \\
D_{h} & =-\beta+C_{1, h-1}^{\prime}\left(\nu+\Sigma \gamma_{o}\right)+\frac{1}{2} C_{1, h-1}^{\prime}\left(\Sigma \Sigma^{\prime}\right) C_{1, h-1}+D_{h-1},
\end{aligned}
$$

with :

$$
\widetilde{\Phi}^{*}=\left[\begin{array}{ccccc}
\Phi_{1}+\Sigma \gamma_{1} & \ldots & \ldots & \Phi_{p-1}+\Sigma \gamma_{p-1} & \Phi_{p}+\Sigma \gamma_{p} \tag{1}\\
I_{K} & \mathbf{0}_{K} & \ldots & \mathbf{0}_{K} & \mathbf{0}_{K} \\
\mathbf{0}_{K} & I_{K} & \cdots & \mathbf{0}_{K} & \mathbf{0}_{K} \\
\vdots & & \ddots & \vdots & \vdots \\
\mathbf{0}_{K} & \cdots & \cdots & I_{K} & \mathbf{0}_{K}
\end{array}\right] \text { is a (Kp,Kp) matrix }
$$

and where the initial conditions are $C_{0}=0, D_{0}=0$ (or $C_{1}=-\alpha, D_{1}=-\beta$), where $C_{1, h}$ indicates the vector of the first K components of the ($K p$)-dimensional vector C_{h}.

Exercise $\mathbf{N}^{\circ} 02$ [A different derivation of the Gaussian ATSM - Scalar case].

During Lecture 4 we have seen how to calculate the no-arbitrage yield-to-maturity formula $R(t, h)$ for $\operatorname{AR}(p)$ and $\operatorname{VAR}(p)$ Factor-Based Term Structure Models characterized by an exponential-affine SDF $M_{t, t+1}$. Let us consider, for ease of exposition, a Gaussian $\operatorname{AR}(1)$ setting. The strategy we have presented was the following :
a) make an assumption about the historical dynamics of the factor $\left(x_{t}\right)$ representing the information the investor uses to price ZCB at any date t and for any residual maturity h. We have assumed that, under the historical probability \mathbb{P}, the factor $\left(x_{t}\right)$ is described by a Gaussian $\operatorname{AR}(p)$ or $\operatorname{VAR}(p)$ process. In the Gaussian $\operatorname{AR}(1)$ case, this means that:

$$
\left.x_{t+1}=\nu+\varphi x_{t}+\sigma \varepsilon_{t+1}, \quad \varepsilon_{t+1} \sim \mathcal{N}(0,1) \text { (under } \mathbb{P}\right) .
$$

b) Make an assumption about the functional form and the parametric specification of the oneperiod SDF $M_{t, t+1}$. In the Gaussian $\operatorname{AR}(1)$ case, we have assumed:

$$
\begin{aligned}
& M_{t, t+1}=\exp \left[-\beta-\alpha x_{t}+\Gamma_{t} \varepsilon_{t+1}-\frac{1}{2} \Gamma_{t}^{2}\right],(\mathrm{SDF}) \\
& \Gamma_{t}=\Gamma\left(x_{t}\right)=\left(\gamma_{o}+\gamma x_{t}\right)
\end{aligned}
$$

and under the absence of arbitrage opportunities principle, we have found $r_{t}=\beta+\alpha x_{t}$ and, more generally:

$$
\begin{array}{ll}
R(t, h) & =-\frac{c_{h}}{h} x_{t}-\frac{d_{h}}{h} \\
c_{h} & =-\alpha+\varphi c_{h-1}+c_{h-1} \sigma \gamma=-\alpha+(\varphi+\sigma \gamma) c_{h-1} \\
d_{h} & =-\beta+c_{h-1}\left(\nu+\gamma_{o} \sigma\right)+\frac{1}{2} c_{h-1}^{2} \sigma^{2}+d_{h-1} \\
c_{0}=0, d_{0}=0
\end{array}
$$

The purpose of this exercise is to show that we only need to make a proper assumption about the dynamics of the latent factor x_{t} and (if they are not the same) of the short rate r_{t} under the riskneutral probability measure \mathbb{Q} in order to find the same yield-to-maturity formula $R(t, h)$. Prove this sentence in the following two cases: i) x_{t} is, under \mathbb{Q}, a latent factor following a Gaussian $\operatorname{AR}(1)$ process, and $\left.r_{t}=\beta+\alpha x_{t} ; i i\right) x_{t}=r_{t}$ is, under \mathbb{Q}, an observable factor following a Gaussian $\mathrm{AR}(1)$ process.

Exercise $\mathrm{N}^{\circ} 03$ [SDF, historical and risk-neutral dynamics and change of measure].

We consider an economy between dates 0 and T. The new information in the economy at date t is denoted by w_{t} and the overall information at date t is $\underline{w}_{t}=\left(w_{t}, w_{t-1}, \ldots, w_{0}\right)$. The random variable w_{t} is called a factor or a state vector, and it may be observable, partially observable or unobservable by the econometrician. The size of w_{t} is K. During Lecture 4 , w_{t} has been specified as a $\operatorname{Gaussian} \operatorname{VAR}(p)$ process with $K \geq 1$ and $p \geq 1$.

The historical dynamics of w_{t} is defined by the joint distribution of \underline{w}_{T}, denoted by \mathbb{P}, or by the conditional p.d.f. (with respect to some measure):

$$
f_{t}\left(w_{t+1} \mid \underline{w}_{t}\right),
$$

or by the conditional Laplace transform (L.T.):

$$
\varphi_{t}\left(u \mid \underline{w}_{t}\right)=E\left[\exp \left(u^{\prime} w_{t+1}\right) \mid \underline{w}_{t}\right],
$$

which is assumed to be defined in an open convex set of \mathbb{R}^{K} (containing zero). We also introduce the conditional Log-Laplace transform :

$$
\psi_{t}\left(u \mid \underline{w}_{t}\right)=\log \left[\varphi_{t}\left(u \mid \underline{w}_{t}\right)\right] .
$$

The conditional expectation operator, given \underline{w}_{t}, is denoted by $E_{t} . \varphi_{t}\left(u \mid \underline{w}_{t}\right)$ and $\psi_{t}\left(u \mid \underline{w}_{t}\right)$ will be also denoted by $\varphi_{t}(u)$ and $\psi_{t}(u)$.
(i) Specify the one-period SDF $M_{t, t+1}\left(\underline{w}_{t+1}\right)$ in such a way that $E_{t}\left[M_{t, t+1}\right]=\exp \left(-r_{t}\right)$, where r_{t} is the short rate between t and $t+1$ (known in t).
(ii) Specify the one-period change of probability measures $\frac{d \mathbb{Q}_{t, t+1}}{d \mathbb{P}_{t, t+1}}$ and $\frac{d \mathbb{P}_{t, t+1}}{d \mathbb{Q}_{t, t+1}}$ as a function of historical and risk-neutral factor's dynamics.

Exercise $\mathrm{N}^{\circ} 04$ [Exercise N° 03, continued].

Let us consider the Gaussian $\operatorname{AR}(1)$ latent process x_{t}, under the probability measure \mathbb{Q}, introduced in Exercise $\mathrm{N}^{\circ} 02$.
(i) On the basis of the results presented in Exercise $\mathrm{N}^{\circ} 03$, specify the SDF $M_{t, t+1}=M_{t, t+1}\left(\eta_{t+1}\right)$, where $\eta_{t} \sim \mathcal{N}(0,1)$ under \mathbb{Q}.
(ii) Determine the historical dynamics of $\left(x_{t}\right)$. For which reason, in your opinion, is important to know the historical dynamics of $\left(x_{t}\right)$ given that we can determine the ZCB pricing formula directly working under \mathbb{Q} ?

Exercise $\mathrm{N}^{\circ} 05$ [No-arbitrage restrictions for the short and long rate].

Let us assume to have a bivariate Gaussian $\operatorname{VAR}(1)$ Factor-Based term structure models, and let us assume that the factor x_{t} be given by $x_{t}=\left(r_{t}, R_{t}\right)^{\prime}$ where $r_{t}=R(t, t+1)$ is the yield with the shortest maturity in our data base (it is the short rate) and where R_{t} is the long rate $R(t, t+H)$ (i.e., the yield with the longest maturity in our data base). This Gaussian VAR(1) ATSM can be summarized as follows:

$$
\begin{array}{ll}
x_{t+1} & \left.=\nu+\Phi x_{t}+\Sigma \varepsilon_{t+1}, \varepsilon_{t+1} \sim \mathcal{N}\left(0, I_{2}\right) \text { (under } \mathbb{P}\right) \\
M_{t, t+1} & =\exp \left[-\beta-\alpha^{\prime} x_{t}+\Gamma_{t}^{\prime} \varepsilon_{t+1}-\frac{1}{2} \Gamma_{t}^{\prime} \Gamma_{t}\right],(\mathrm{SDF}) \\
\Gamma_{t} & =\Gamma\left(x_{t}\right)=\left(\gamma_{o}+\gamma x_{t}\right) \\
R(t, t+h) & =-\frac{C_{h}^{\prime}}{h} x_{t}-\frac{D_{h}}{h} \\
C_{h} & =-\alpha+(\Phi+\Sigma \gamma)^{\prime} C_{h-1}=-\alpha+\Phi^{*^{\prime}} C_{h-1} \\
D_{h} & =-\beta+C_{h-1}^{\prime}\left(\nu+\Sigma \gamma_{o}\right)+\frac{1}{2} C_{h-1}^{\prime}\left(\Sigma \Sigma^{\prime}\right) C_{h-1}+D_{h-1} \\
C_{0}=0, D_{0}=0
\end{array}
$$

Write the complete set of no-arbitrage restrictions that this model has to satisfy.

Exercise $\mathbf{N}^{\circ} 06$ [Conditional distribution of yields when the factor is Gaussian $\operatorname{AR}(p)$].

Let us consider the following Gaussian $\operatorname{AR}(p)$ Factor Based Term structure model:

$$
\begin{array}{ll}
x_{t+1} & =\nu+\varphi_{1} x_{t}+\ldots+\varphi_{p} x_{t+1-p}+\sigma \varepsilon_{t+1}, \varepsilon_{t+1} \sim \mathcal{N}(0,1) \text { (under } \mathbb{P} \text {) } \\
M_{t, t+1} & =\exp \left[-\beta-\alpha^{\prime} X_{t}+\Gamma_{t} \varepsilon_{t+1}-\frac{1}{2} \Gamma_{t}^{2}\right],(\mathrm{SDF}), X_{t}=\left[x_{t}, \ldots, x_{t+1-p}\right]^{\prime} \\
r_{t} & =\beta+\alpha^{\prime} X_{t}, \Gamma_{t}=\Gamma\left(x_{t}\right)=\left(\gamma_{o}+\gamma^{\prime} X_{t}\right), \\
R(t, h) & =-\frac{c_{h}{ }^{\prime}}{h} X_{t}-\frac{d_{h}}{h}, \\
c_{h} & =-\alpha+\Phi^{\prime} c_{h-1}+c_{1, h-1} \sigma \gamma=-\alpha+\Phi^{*^{\prime}} c_{h-1}, \\
d_{h} & =-\beta+c_{1, h-1}\left(\nu+\gamma_{o} \sigma\right)+\frac{1}{2} c_{1, h-1}^{2} \sigma^{2}+d_{h-1}, \\
c_{0}=0, d_{0}=0, &
\end{array}
$$

where $\left(x_{t}\right)$ is latent, $\gamma=\left(\gamma_{1}, \ldots, \gamma_{p}\right)^{\prime}$ and where:

$$
\Phi^{*}=\left[\begin{array}{ccccc}
\varphi_{1}+\sigma \gamma_{1} & \ldots & \ldots & \varphi_{p-1}+\sigma \gamma_{p-1} & \varphi_{p}+\sigma \gamma_{p} \\
1 & 0 & \ldots & 0 & 0 \\
0 & 1 & \ldots & 0 & 0 \\
\vdots & & \ddots & \vdots & \vdots \\
0 & \cdots & \cdots & 1 & 0
\end{array}\right] .
$$

For a given residual maturity h, which is the historical dynamics of the yield process $R=[R(t, h)$, $0 \leq t<T]$?

Exercise $\mathbf{N}^{\circ} 07$ [Conditional p.d.f. of yields when the factor is Gaussian VAR(1)].

When we have presented Gaussian $\operatorname{VAR}(1)$ Factor-Based Term Structure models, we have determined the link between the ZCB price $B(t, h)$ (or the yield $R(t, h))$ and the factor (x_{t}) at a given point in time t and for any residual maturity h. The purpose of this exercise is to use the historical conditional p.d.f. of the K-dimensional $\operatorname{VAR}(1)$ factor $\left(x_{t}\right)$ (see exercise $\mathrm{N}^{\circ} 04$ for the notation) to determine the historical conditional p.d.f. of any yield over time (i.e., t is varying and h is fixed). We also briefly review the method of Pearson and Sun (1994) that use the yield dynamics to obtain a Maximum Likelihood estimation of our Gaussian VAR(1) ATSM.

Exercise $\mathrm{N}^{\circ} 08$ [Working with the Non-centered Gamma Distribution].

Let us assume that Y is a Non-centered Gamma random variable with parameters $\nu>0, \beta>0$ and $\mu>0$, i.e. $Y \sim \widetilde{\gamma}(\nu, \beta, \mu)$. We know that this is equivalent to the existence of a random variable $Z \sim \mathcal{P}(\beta)$ such that:

$$
\left\{\begin{array} { l }
{ \frac { Y } { \mu } | Z \sim \gamma (\nu + Z , 1) , \nu > 0 , } \\
{ Z \sim \mathcal { P } (\beta) , \beta > 0 , \mu > 0 , }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
Y \mid Z \sim \gamma(\nu+Z, \mu), \nu>0 \\
Z \sim \mathcal{P}(\beta), \beta>0, \mu>0
\end{array}\right.\right.
$$

where β is the non-centrality parameter. Prove that:

- $E[Y]=\nu \mu+\beta \mu$ and $V[Y]=\nu \mu^{2}+2 \mu^{2} \beta$ (mean and variance);
- $E[\exp (u Y)]=\exp \left[-\nu \log (1-u \mu)+\beta \frac{u \mu}{1-u \mu}\right]$, for $u<1 / \mu$ (Laplace transform);

Exercise ${ }^{\circ} 09$ [Working with the ARG(1) Process].

Let us consider an $\operatorname{ARG}(1)$ process $\left(x_{t}\right)$ defined as:

$$
\begin{aligned}
& \left.\frac{x_{t+1}}{\mu} \right\rvert\, z_{t+1} \sim \gamma\left(\nu+z_{t+1}, 1\right), \quad \nu>0 \\
& z_{t+1} \mid x_{t} \sim \mathcal{P}\left(\rho x_{t} / \mu\right), \quad \rho>0, \mu>0, \rho=\beta \mu
\end{aligned}
$$

Show that:

- $E\left(x_{t+1} \mid x_{t}\right)=\nu \mu+\rho x_{t}$ and $V\left(x_{t+1} \mid x_{t}\right)=\nu \mu^{2}+2 \mu \rho x_{t}$.
- $E\left(x_{t}\right)=\frac{\nu \mu}{1-\rho}$ and $V\left(x_{t}\right)=\frac{\nu \mu^{2}}{(1-\rho)^{2}}$.
- $E\left[\exp \left(u x_{t+1}\right) \mid \underline{x_{t}}\right]=\exp \left[\frac{\rho u}{1-u \mu} x_{t}-\nu \log (1-u \mu)\right]$.
- $E\left(\varepsilon_{t+1} \mid \varepsilon_{t}\right)=0, V\left(\varepsilon_{t+1} \mid \varepsilon_{t}\right)=\nu \mu^{2}+2 \mu \rho x_{t}, E\left(\varepsilon_{t}\right)=0$ and $V\left(\varepsilon_{t}\right)=\nu \mu^{2}+2 \nu \mu^{2} \frac{\rho}{1-\rho}$.

Exercise $\mathbf{N}^{\circ} \mathbf{1 0}$ [The ARG(1) and $\operatorname{ARG}(p)$ Positive Affine Yield Curves].

Let us consider a scalar latent factor x_{t+1} whose historical dynamics is described by the following $\operatorname{ARG}(p)$ process, with $p \geq 1$:

$$
\begin{aligned}
& \left.\frac{x_{t+1}}{\mu} \right\rvert\, z_{t+1} \sim \gamma\left(\nu+z_{t+1}, 1\right), \nu>0 \\
& z_{t+1} \left\lvert\, \underline{x_{t}} \sim \mathcal{P}\left(\frac{\rho_{1} x_{t}+\ldots+\rho_{p} x_{t-p+1}}{\mu}\right)\right., \quad \rho_{i}=\beta_{i} \mu, \quad i \in\{1, \ldots, p\} .
\end{aligned}
$$

i Show that, when $p=1$, and the one-period stochastic discount factor (SDF) $M_{t, t+1}$ is given by:

$$
M_{t, t+1}=\exp \left[-\beta-\alpha x_{t}+\Gamma_{t} \varepsilon_{t+1}\right] \exp \left[-a\left(\Gamma_{t} ; \rho, \mu\right) x_{t}-b\left(\Gamma_{t} ; \nu, \mu\right)+\Gamma_{t}\left(\nu \mu+\rho x_{t}\right)\right]
$$

with $\Gamma_{t}=\gamma_{o}+\gamma x_{t}$, then the positive affine term structure of interest rates is given by:

$$
R(t, t+h)=-\frac{1}{h} \log B(t, t+h)=-\frac{c_{h}}{h} x_{t}-\frac{d_{h}}{h}, \quad h \geq 1
$$

with:

$$
\left\{\begin{aligned}
c_{h} & =-\alpha+\left[a\left(c_{h-1}+\Gamma_{t} ; \rho, \mu\right)-a\left(\Gamma_{t} ; \rho, \mu\right)\right] \\
& =-\alpha+a\left(c_{h-1} ; \rho^{*}, \mu^{*}\right), \\
d_{h} & =-\beta+\left[b\left(c_{h-1}+\Gamma_{t} ; \nu, \mu\right)-b\left(\Gamma_{t} ; \nu, \mu\right)\right]+d_{h-1} \\
& =-\beta+b\left(c_{h-1} ; \nu, \mu^{*}\right)+d_{h-1},
\end{aligned}\right.
$$

and with initial conditions $c_{0}=0, d_{0}=0$ (or $c_{1}=-\alpha, d_{1}=-\beta$).
ii) Now, let us assume that $p>1$ and that the SFD is given by:

$$
M_{t, t+1}=\exp \left[-\beta-\alpha^{\prime} X_{t}+\Gamma_{t} \varepsilon_{t+1}\right] \exp \left[-a\left(\Gamma_{t} ; \rho, \mu\right)^{\prime} X_{t}-b\left(\Gamma_{t} ; \nu, \mu\right)+\Gamma_{t}\left(\nu \mu+\rho^{\prime} X_{t}\right)\right]
$$

with $\Gamma_{t}=\gamma_{o}+\gamma^{\prime} x_{t}$. Show that the positive affine term structure of interest rates is given by:

$$
R(t, t+h)=-\frac{1}{h} \log B(t, t+h)=-\frac{c_{h}{ }^{\prime}}{h} X_{t}-\frac{d_{h}}{h}, \quad h \geq 1
$$

with:

$$
\left\{\begin{aligned}
c_{h} & =-\alpha+\left[a\left(c_{1, h-1}+\Gamma_{t} ; \rho, \mu\right)-a\left(\Gamma_{t} ; \rho, \mu\right)\right]+\bar{c}_{h-1} \\
& =-\alpha+a\left(c_{1, h-1} ; \rho^{*}, \mu^{*}\right)+\bar{c}_{h-1} \\
d_{h} & =-\beta+\left[b\left(c_{1, h-1}+\Gamma_{t} ; \nu, \mu\right)-b\left(\Gamma_{t} ; \nu, \mu\right)\right]+d_{h-1} \\
& =-\beta+b\left(c_{1, h-1} ; \nu, \mu^{*}\right)+d_{h-1}
\end{aligned}\right.
$$

and where $\bar{c}_{h-1}=\left(c_{2, h-1}, \ldots, c_{p, h-1}, 0\right)^{\prime}$, and with initial conditions $c_{0}=0, d_{0}=0\left(\right.$ or $c_{1}=-\alpha, d_{1}=$ $-\beta$).

Exercise $\mathbf{N}^{\circ} 11$ [The ARG(p) Risk-Neutral Laplace Transform].

Determine Risk-Neutral Laplace transform of the $\operatorname{ARG}(p)$ process, presented in the previous exercise, for $p=1$ and $p>1$.

