# Fixed Income and Credit Risk : solutions for exercise sheet $\mathrm{n}^{\circ} 04$ 

## Fall Semester 2012

Professor Assistant Program<br>Fulvio Pegoraro Roberto Marfè MSc. Finance

## Exercise ${ }^{\circ} 01$ [Exponential-affine ZCB Pricing Formula].

Given that $M_{t, t+1}$ is exponential-affine in $\varepsilon_{t+1}$ (i.e. $x_{t+1}$ ) and that the conditional Laplace transform of $x_{t+1}$ is exponential-affine in the conditioning variable $\left(x_{t}\right)$ we suggest that the ZCB pricing formula at date $t$ be an exponential-affine function of $x_{t}$ and then "we check if it works". We proceed in the following way:
a) We suggest $B(t, t+h)=\exp \left(c_{h}^{\prime} X_{t}+d_{h}\right)$ and we (equivalently) rewrite the pricing formula in terms of the payoff $B(t+1, t+h)=\exp \left(c_{h-1}^{\prime} X_{t+1}+d_{h-1}\right)$ :

$$
\begin{aligned}
B(t, t+h) & =\exp \left(c_{h}^{\prime} X_{t}+d_{h}\right) \\
& =E_{t}\left[M_{t, t+1} \cdots M_{t+h-1, t+h}\right] \\
& =E_{t}\left[M_{t, t+1} B(t+1, t+h)\right] \\
& =E_{t}\left[\exp \left(-\beta-\alpha^{\prime} X_{t}+\Gamma_{t} \varepsilon_{t+1}-\frac{1}{2} \Gamma_{t}^{2}\right) \exp \left(c_{h-1}^{\prime} X_{t+1}+d_{h-1}\right)\right]
\end{aligned}
$$

b) we do the algebra (calculating the conditional Laplace transform) obtaining:

$$
\begin{aligned}
& B(t, t+h) \\
= & \exp \left(c_{h}^{\prime} X_{t}+d_{h}\right) \\
= & \exp \left[-\beta-\alpha^{\prime} X_{t}-\frac{1}{2} \Gamma_{t}^{2}+d_{h-1}\right] \times E_{t}\left[\exp \left(\Gamma_{t} \varepsilon_{t+1}+c_{h-1}^{\prime} X_{t+1}\right)\right] \\
= & \left.\exp \left[-\beta-\alpha^{\prime} X_{t}-\frac{1}{2} \Gamma_{t}^{2}+d_{h-1}+c_{h-1}^{\prime}\left(\Phi X_{t}+\tilde{\nu}\right)\right] \times E_{t}\left[\exp \left(\Gamma_{t}+\sigma c_{1, h-1}\right) \varepsilon_{t+1}\right)\right] \\
= & \exp \left[\left(-\alpha+\Phi^{\prime} c_{h-1}+c_{1, h-1} \sigma \gamma\right)^{\prime} X_{t}\right. \\
& \left.\quad+\left(-\beta+c_{1, h-1} \nu+\frac{1}{2} c_{1, h-1}^{2} \sigma^{2}+\gamma_{o} c_{1, h-1} \sigma+d_{h-1}\right)\right]
\end{aligned}
$$

c) and by identifying the coefficients we find the recursive relations for $c_{h}$ and $d_{h}$ characterizing the pricing formula $B(t, t+h)=\exp \left(c_{h}^{\prime} X_{t}+d_{h}\right)$.

Now, the last elements we need to completely determine the pricing formula are the starting conditions for $c_{h}$ and $d_{h}$. We proceed as follows: given that, by definition of ZCB , we have $B(t, t)=1$, then

$$
\exp \left(c_{0}^{\prime} X_{t}+d_{0}\right)=1 \Longleftrightarrow\left(c_{0}^{\prime} X_{t}+d_{0}\right)=0 \forall X_{t} \Longleftrightarrow c_{0}=0, \quad d_{0}=0
$$

We can also equivalently write:
given that, by definition of ZCB , we have $B(t, t+1)=\exp \left(-r_{t}\right)$, then

$$
\exp \left(c_{1}^{\prime} X_{t}+d_{1}\right)=\exp \left(-r_{t}\right) \Longleftrightarrow\left(c_{1}^{\prime} X_{t}+d_{1}\right)=-r_{t} \forall X_{t} \Longleftrightarrow c_{1}=-\alpha, \quad d_{1}=-\beta
$$

## Exercise $\mathrm{N}^{\circ} 02$ [Identification Issue in latent factor Gaussian ATSMs].

We have the following family of Gaussian $\operatorname{AR}(p)$ Factor-Based term structure models:

$$
\begin{array}{ll}
x_{t+1} & =\nu+\varphi x_{t}+\sigma \varepsilon_{t+1}, \varepsilon_{t+1} \sim \mathcal{N}(0,1) \quad(\text { under } \mathbb{P}) \\
M_{t, t+1} & =\exp \left[-\beta-\alpha x_{t}+\Gamma_{t} \varepsilon_{t+1}-\frac{1}{2} \Gamma_{t}^{2}\right], \quad(\mathrm{SDF}) \\
r_{t} & =\beta+\alpha x_{t}, \Gamma_{t}=\Gamma\left(x_{t}\right)=\left(\gamma_{o}+\gamma x_{t}\right), \\
R(t, h) & =-\frac{c_{h}}{h} x_{t}-\frac{d_{h}}{h}, \\
c_{h} & =-\alpha+\varphi c_{h-1}+c_{h-1} \sigma \gamma=-\alpha+(\varphi+\sigma \gamma) c_{h-1}, \\
d_{h} & =-\beta+c_{h-1}\left(\nu+\gamma_{o} \sigma\right)+\frac{1}{2} c_{h-1}^{2} \sigma^{2}+d_{h-1}, \\
c_{0}=0, d_{0}=0 . &
\end{array}
$$

We have seen that the yield-to-maturity formula $R(t, h)$ is completely determined by the specification of the historical dynamics of $x_{t+1}$ (Gaussian $\left.\operatorname{AR}(1)\right)$ and by the specification of the one-period SDF $M_{t, t+1}$ (exponential-affine in $\varepsilon_{t+1}$ ). The identification issue, associated to the specification of yield-to-maturity formula, is therefore given by the fact that different (infinitely many) set of parameter values $(\nu, \varphi, \sigma)$ and $\left(\beta, \alpha, \gamma_{o}, \gamma\right)$ can generate the same theoretical $R(t, h)$. This means that, from a given time series of observations $R^{o}(t, h)$, we cannot detect the unique set of parameters such that the distance between $R(t, h)$ and $R^{o}(t, h)$ is minimized, given that several different set of parameters determine the same $R(t, h)$.
More formally : for arbitrary real constants $\mu_{1}$ and $\mu_{2}$, if we replace:
a) $x_{t}$ by $\bar{x}_{t}=\mu_{1}+\mu_{2} x_{t}$ (any Gaussian stochastic process can be represented as an affine transformation of the centered and normalized one),
b.1) $\gamma$ by $\frac{\gamma}{\mu_{2}}$,
b.2) $\gamma_{o}$ by $\gamma_{o}-\frac{\mu_{1}}{\mu_{2}} \gamma^{\prime} e$,
b.3) $\alpha$ by $\frac{\alpha}{\mu_{2}}$
b.4) and $\beta$ by $\beta-\frac{\mu_{1}}{\mu_{2}} \alpha^{\prime} e$.
we obtained the same SDF $M_{t, t+1}$ dynamics (depending on the factor dynamics) and therefore we generate the same yield $R(t, h)$ (remember that $B(t, h)=E_{t}\left[M_{t, t+1} \ldots M_{t+h-1, t+h}\right]$ ). In other words, for a starting parametric specification of $x_{t}$ and $M_{t, t+1}=M_{t, t+1}\left(x_{t}\right)$, we have that, after the parametric transformations $a), b .1)-b .4$ ), we obtain a new latent factor $\bar{x}_{t}$ and $\operatorname{SDF} \bar{M}_{t, t+1}\left(\bar{x}_{t}\right)$ such that $M_{t, t+1}\left(x_{t}\right)=M_{t, t+1}\left(\bar{x}_{t}\right)$ for any $t$. Thus, $E_{t}\left[M_{t, t+1} \ldots M_{t+h-1, t+h}\right]=E_{t}\left[\bar{M}_{t, t+1} \ldots \bar{M}_{t+h-1, t+h}\right]$ for any $t$ and $h$ and the theoretical yields are therefore the same.
If $x_{t}$ is not directly observed, we can assume for instance, as far as the term structure is concerned, that $\nu=0$ and $\sigma=1$, or $\beta=0$ and $\alpha=1$. In this way the identification problem is solved. This result is easily generalized to the case of a Gaussian $\operatorname{AR}(p)$ process [see Monfort and Pegoraro (2007), Section 2.4].

## Exercise ${ }^{\circ} 03$ [Excess Returns of Zero-Coupon Bonds].

Given that $B(t, T)=\exp \left(c_{T-t}^{\prime} X_{t}+d_{T-t}\right)$, we can write:

$$
\begin{aligned}
\rho(t+1, T) & =\log [B(t+1, T)]-\log [B(t, T)] \\
& =c_{T-t-1}^{\prime} X_{t+1}+d_{T-t-1}-c_{T-t}^{\prime} X_{t}-d_{T-t} \\
& =c_{T-t-1}^{\prime}\left[X_{t+1}-\Phi X_{t}-\tilde{\nu}\right]+\left(\beta+\alpha^{\prime} X_{t}\right)-\sigma c_{1, T-t-1}\left(\gamma_{o}+\gamma^{\prime} X_{t}\right)-\frac{1}{2} c_{1, T-t-1}^{2} \sigma^{2} \\
& =\left(c_{1, T-t-1} \sigma\right) \varepsilon_{t+1}+\left(\beta+\alpha^{\prime} X_{t}\right)-\sigma c_{1, T-t-1}\left(\gamma_{o}+\gamma^{\prime} X_{t}\right)-\frac{1}{2} c_{1, T-t-1}^{2} \sigma^{2} .
\end{aligned}
$$

Now, we have that, under the absence of arbitrage $r_{t}=\left(\beta+\alpha^{\prime} X_{t}\right)$ and, consequently, the result is proved.

## Exercise $\mathbf{N}^{\circ} \mathbf{0 4}$ [Risk-Neutral Laplace Transform of the Gaussian AR( $p$ ) Factor].

The risk-neutral Laplace transform of $x_{t+1}$, conditionally to $\underline{x_{t}}$, is given by:

$$
\begin{aligned}
E_{t}^{\mathbb{Q}}\left[\exp \left(u x_{t+1}\right)\right]= & E_{t}\left[\frac{M_{t, t+1}}{E_{t(\text { ( }}^{t, t+1)}}\right. \\
= & \left.\exp \left(u x_{t+1}\right)\right] \\
= & E_{t}\left[\exp \left(\left(\gamma_{o}+\gamma^{\prime} X_{t}\right) \varepsilon_{t+1}-\frac{1}{2}\left(\gamma_{o}+\gamma^{\prime} X_{t}\right)^{2}+u x_{t+1}\right)\right] \\
& \exp \left[u\left(\nu+\varphi^{\prime} X_{t}\right)-\frac{1}{2}\left(\gamma_{o}+\gamma^{\prime} X_{t}\right)^{2}\right] \\
& \quad E_{t}\left[\exp \left(\left(\gamma_{o}+\gamma^{\prime} X_{t}+u \sigma\right) \varepsilon_{t+1}\right)\right] \\
= & \exp \left[u\left[\left(\nu+\sigma \gamma_{o}\right)+(\varphi+\sigma \gamma)^{\prime} X_{t}\right]+\frac{1}{2} u^{2} \sigma^{2}\right]
\end{aligned}
$$

where $\varphi=\left[\varphi_{1}, \ldots, \varphi_{p}\right]^{\prime}$.

## Exercise ${ }^{\circ} 05$ [Risk-Neutral Zero-Coupon Bond Return Process].

We have that

$$
\begin{aligned}
\rho(t+1, T) & =\log [B(t+1, T)]-\log [B(t, T)] \\
& =c_{T-t-1}^{\prime} X_{t+1}+d_{T-t-1}-c_{T-t}^{\prime} X_{t}-d_{T-t} \\
& =c_{T-t-1}^{\prime} X_{t+1}-\left(-\alpha^{\prime}+c_{T-t-1}^{\prime} \Phi^{*}\right) X_{t}+\beta-c_{1, T-t-1} \nu^{*}-\frac{1}{2} c_{1, T-t-1}^{2} \sigma^{2} \\
& =c_{T-t-1}^{\prime}\left[X_{t+1}-\Phi^{*} X_{t}-\tilde{\nu}^{*}\right]+r_{t}-\frac{1}{2} c_{1, T-t-1}^{2} \sigma^{2} \\
& =r_{t}-\frac{1}{2} \omega(t+1, T)^{2}-\omega(t+1, T) \eta_{t+1}
\end{aligned}
$$

and the first part of the result is proved. Now, if we calculate $E_{t}^{\mathbb{Q}} \exp [\rho(t+1, T)]$ we have:

$$
\begin{aligned}
E_{t}^{\mathbb{Q}} \exp [\rho(t+1, T)] & =E_{t}^{\mathbb{Q}} \exp \left[r_{t}-\frac{1}{2} \omega(t+1, T)^{2}-\omega(t+1, T) \eta_{t+1}\right] \\
& =\exp \left[r_{t}-\frac{1}{2} \omega(t+1, T)^{2}\right] E_{t}^{\mathbb{Q}} \exp \left[-\omega(t+1, T) \eta_{t+1}\right]=\exp \left(r_{t}\right)
\end{aligned}
$$

and therefore $\lambda_{t}^{\mathbb{Q}}(\rho, 1)=\log E_{t}^{\mathbb{Q}} \exp [\rho(t+1, T)]-r_{t}=0$.

## Exercise ${ }^{\circ} 06$ [Yield Curve Shapes, Risk-Neutral Stationarity and Long Rates].

The different shapes that the yield curve formula $R(t, t+h)=-\frac{1}{h}\left[c_{h}^{\prime} X_{t}+d_{h}\right]$ is able to reproduce depend crucially on the system of difference equations ( $c_{h}, d_{h}$ ):

$$
\left\{\begin{array}{l}
c_{h}=\Phi^{*^{\prime}} c_{h-1}-\alpha \\
d_{h}=-\beta+c_{1, h-1} \nu^{*}+\frac{1}{2} c_{1, h-1}^{2} \sigma^{2}+d_{h-1}
\end{array}\right.
$$

with initial conditions $c_{0}=0$ and $d_{0}=0$. Let us consider in that exercise the case where $x_{t+1}$ follows a Gaussian $\operatorname{AR}(1)$ and $\operatorname{AR}(2)$ process respectively.
$p=1$ Let us consider that $x_{t}=r_{t}$ follows a Gaussian $\operatorname{AR}(1)$ process. In this case $c_{h}$ satisfies the fist-order difference equation:

$$
c_{h}=-1+(\varphi+\sigma \gamma) c_{h-1},
$$

where $\sigma>0, \gamma$ and $|\varphi|<1$ are scalar coefficients, and with a general solution, denoted $c(h)$, given by:

$$
c(h)=-\left[\frac{1}{1-(\varphi+\sigma \gamma)}\right]\left[1-(\varphi+\sigma \gamma)^{h}\right]=-\left[\frac{1-\varphi^{* h}}{1-\varphi^{*}}\right],
$$

which tends, for $h$ increasing to infinity, to the limit:

$$
\bar{c}=-\left[\frac{1}{1-\varphi^{*}}\right],
$$

under the condition $\left|\varphi^{*}\right|<1$, where $\varphi^{*}=(\varphi+\sigma \gamma)$ is the unique eigenvalue of the (scalar) matrix $\Phi^{*^{\prime}}$. This means that this stability condition of the difference equation $c_{h}$ coincide with the stationarity condition of the $\operatorname{AR}(1)$ process $x_{t+1}$ under the risk-neutral probability $\mathbb{Q}$.

Now, observe that this condition implies $c(h)<0$ for every $h>0$. In addition, if $0<\varphi+\sigma \gamma<$ 1 (respectively, $-1<\varphi+\sigma \gamma<0$ ), the function $c(h)$ converges in decreasing (respectively, oscillating) towards $\bar{c}$.
With regard to $d_{h}$, it easy to verify that :

$$
\begin{gathered}
d(h)=-\left[\frac{\nu^{*}}{1-\varphi^{*}}\right](h-1)+\left[\frac{\varphi^{*}-\varphi^{* h}}{1-\varphi^{*}}\right]\left[\frac{\nu^{*}}{1-\varphi^{*}}-\frac{\sigma^{2}}{\left(1-\varphi^{*}\right)^{2}}\right] \\
+\frac{\sigma^{2}}{2\left(1-\varphi^{*}\right)^{2}}\left[(h-1)+\frac{\varphi^{* 2}-\varphi^{* 2 h}}{1-\varphi^{* 2}}\right] .
\end{gathered}
$$

Consequently, the yield to maturity formula, for $p=1$, is given by :

$$
\begin{gathered}
R(t, t+h)=\frac{1}{h}\left[\frac{1-\varphi^{* h}}{1-\varphi^{*}}\right] r_{t}+\frac{(h-1)}{h}\left[\frac{\nu^{*}}{1-\varphi^{*}}\right]-\frac{1}{h}\left[\frac{\varphi^{*}-\varphi^{* h}}{1-\varphi^{*}}\right]\left[\frac{\nu^{*}}{1-\varphi^{*}}-\frac{\sigma^{2}}{\left(1-\varphi^{*}\right)^{2}}\right] \\
-\frac{\sigma^{2}}{2 h\left(1-\varphi^{*}\right)^{2}}\left[(h-1)+\frac{\varphi^{* 2}-\varphi^{* 2 h}}{1-\varphi^{* 2}}\right]
\end{gathered}
$$

$p=2$ If the factor $x_{t}=r_{t}$ is a Gaussian $\operatorname{AR}(2)$ process, the recursive equation for $c_{h}$ is described by a first-order $(2 \times 2)$ system of difference equations of the following type:

$$
\left[\begin{array}{c}
c_{1, h}  \tag{1}\\
c_{2, h}
\end{array}\right]-\left[\begin{array}{l}
\varphi_{1}+\sigma \gamma_{1} \\
\varphi_{2}+\sigma \gamma_{2}
\end{array}\right]\left[\begin{array}{l}
c_{1, h-1} \\
c_{2, h-1}
\end{array}\right]=-\left[\begin{array}{l}
1 \\
0
\end{array}\right] ;
$$

substituting the first equation into the second, we find for $c_{1, h+1}$ the following second-order linear difference equation:

$$
\begin{equation*}
c_{1, h+1}=-1+\varphi_{1}^{*} c_{1, h}+\varphi_{2}^{*} c_{1, h-1}, \tag{2}
\end{equation*}
$$

where $\varphi_{1}^{*}=\left(\varphi_{1}+\sigma \gamma_{1}\right)$ and $\varphi_{2}^{*}=\left(\varphi_{1}+\sigma \gamma_{2}\right)$; under the condition that the two eigenvalues $\left(\lambda_{1}, \lambda_{2}\right)$ of $\Phi^{*^{\prime}}$ (or the inverse of the roots of $1-\varphi_{1}^{*} L-\varphi_{2}^{*} L^{2}$ ) are not equal and less than unity in modulus, and regardless of their real or complex nature, the limit of $c_{1, h}$ is given by:

$$
\bar{c}_{1}=-\frac{1}{\left(1-\lambda_{1}\right)\left(1-\lambda_{2}\right)}
$$

these conditions can equivalently be expressed in the following way : $\varphi_{1}^{*}+\varphi_{2}^{*}<1, \varphi_{2}^{*}-\varphi_{1}^{*}<1$ and $\left|\varphi_{2}^{*}\right|<1$. These are exactly the stationarity conditions of the Gaussian $\operatorname{AR}(2)$ process $x_{t+1}$ under the risk-neutral probability $\mathbb{Q}$.

If we substitute $\bar{c}_{1}$ into the second equation of system (1) we find, consequently, the limit of $c_{2, h}$ :

$$
\bar{c}_{2}=-\varphi_{2}^{*} \frac{1}{\left(1-\lambda_{1}\right)\left(1-\lambda_{2}\right)} .
$$

The recursive equation characterizing $d_{h}$ is given by:

$$
d_{h}=\left\{\begin{array}{lr}
0 & \text { for } h=1 \\
\nu^{*} \sum_{j=1}^{h-1} c_{j}+\frac{1}{2} \sigma^{2} \sum_{j=1}^{h-1} c_{j}^{2}, & \forall h \geq 2
\end{array}\right.
$$

that is, it is a function of (some parameter and) $c_{j}$ for $j \in\{1, \ldots, h-1\}$.

## Exercise $\mathbf{N}^{\circ} 07$.

Let us consider again the system of difference equations $\left(c_{h}, d_{h}\right)$ :

$$
\left\{\begin{aligned}
c_{h} & =\Phi^{*^{\prime}} c_{h-1}-\alpha \\
d_{h} & =-\beta+c_{1, h-1} \nu^{*}+\frac{1}{2} c_{1, h-1}^{2} \sigma^{2}+d_{h-1}
\end{aligned}\right.
$$

with initial conditions $c_{0}=0$ and $d_{0}=0$. Let us consider in that exercise the general case where $x_{t+1}$ follows a Gaussian $\operatorname{AR}(p)$ process. In this case, it is well known that the steady state $\overline{\mathbf{C}}=\left[\bar{c}_{1}, \ldots, \bar{c}_{p}\right]^{\prime}$ of the system $c_{h}$ is given, $I$ denoting the $(p \times p)$ identity matrix, by:

$$
\begin{equation*}
\overline{\mathbf{C}}=-\left(I-\Phi^{*^{\prime}}\right)^{-1} \alpha, \tag{3}
\end{equation*}
$$

under the (stability) condition that the $p$ eigenvalues $\left(\lambda_{1}, \ldots, \lambda_{p}\right)$ of $\Phi^{*^{\prime}}$ are all smaller than unity in modulus, or, equivalently, that the risk-neutral dynamics of $\left(x_{t}\right)$ is stationary, or that the roots of the risk-neutral autoregressive polynomial (of degree $p$ ) $\Psi^{*}(L)=1-\varphi_{1}^{*} L-\ldots-\varphi_{p}^{*} L^{p}$ have a modulus larger than one (given that these roots are the inverse of the eigenvalues). More precisely, the system of equations $c_{h}$ can be rewritten as:

$$
\left\{\begin{aligned}
c_{1, h} & =\varphi_{1}^{*} c_{1, h-1}+c_{2, h-1}-\alpha_{1} \\
c_{2, h} & =\varphi_{2}^{*} c_{1, h-1}+c_{3, h-1}-\alpha_{2} \\
& \vdots \\
c_{p-1, h} & =\varphi_{p-1}^{*} c_{1, h-1}+c_{p, h-1}-\alpha_{p-1} \\
c_{p, h} & =\varphi_{p}^{*} c_{1, h-1}-\alpha_{p},
\end{aligned}\right.
$$

and if we substitute the $p^{t h}$ equation in the $(p-1)^{t h}$ for $c_{p, h-1}$, and then the $(p-1)^{t h}$ equation in the $(p-2)^{\text {th }}$ for $c_{p-1, h-1}$, and so on till the first one, we find that $c_{1, h}$ is described by the following $p^{t h}$ order linear difference equation :

$$
\Psi^{*}(L) c_{1, h}=-\sum_{i=1}^{p} \alpha_{i},
$$

where $\Psi^{*}(L)=1-\varphi_{1}^{*} L-\ldots-\varphi_{p}^{*} L^{p}$ operates here to $h$. The remaining equations are given by :

$$
c_{p-j, h}=-\sum_{i=0}^{j} \alpha_{p-i}+\sum_{i=0}^{j} \varphi_{p-i}^{*} c_{1, h-j+i-1}, \quad j \in\{0, \ldots, p-2\} .
$$

Given the risk-neutral stationary assumption on the process $\left(x_{t}\right)$, the relations $c_{p-j, h}$, for $j \in$ $\{0, \ldots, p-1\}$, converge at an exponential rate with possible oscillations, when $h \rightarrow \infty$. The limits are :

$$
\begin{aligned}
\bar{c}_{1} & =-\frac{\sum_{i=1}^{p} \alpha_{i}}{\Psi^{*}(1)} \\
\bar{c}_{p-j} & =-\sum_{i=0}^{j} \alpha_{p-i}+\bar{c}_{1} \sum_{i=0}^{j} \varphi_{p-i}^{*}, \quad j \in\{0, \ldots, p-2\} .
\end{aligned}
$$

Note that $\Psi^{*}(1)>0$ because of the stability conditions.
With regard to $d_{h}$, its equation gives the specification of the long-term yield $R(t, \infty)$ as a function of the steady state $\bar{c}_{1}$. Indeed, the difference equation $d_{h}$ can be written (assuming the identification condition $\beta=0$, as we have seen in Exercise $\mathrm{N}^{\circ} 02$ ) as:

$$
d_{h}= \begin{cases}0 & \text { for } h=1  \tag{4}\\ \nu^{*} \sum_{j=1}^{h-1} c_{1, j}+\frac{1}{2} \sigma^{2} \sum_{j=1}^{h-1} c_{1, j}^{2}, & \forall h \geq 2\end{cases}
$$

and, under the stability of the system $c_{h}$, we have from the yield-to-maturity formula that:

$$
\begin{aligned}
R(t, \infty) & =\lim _{h \rightarrow+\infty} R(t, h) \\
& =\lim _{h \rightarrow+\infty}-\frac{c_{h}{ }^{\prime}}{h} X_{t}-\frac{\nu^{*}}{h} \sum_{j=1}^{h-1} c_{1, j}-\frac{\sigma^{2}}{2 h} \sum_{j=1}^{h-1} c_{1, j}^{2}=-\bar{c}_{1} \nu^{*}-\frac{1}{2}\left(\bar{c}_{1} \sigma\right)^{2},
\end{aligned}
$$

which is positive under the condition $\left[\nu^{*}+\frac{1}{2} \sigma^{2} \bar{c}_{1}\right]>0$.
The shape of $c_{h}$ (and thus the yield curve shapes), for $h$ varying, depends on whether the eigenvalues $\left(\lambda_{1}, \ldots, \lambda_{p}\right)$ of $\Phi^{*^{\prime}}$ are real or complex, single or multiple, larger or smaller than one in modulus.

## Exercise $\mathrm{N}^{\circ} 08$ [Gaussian $\operatorname{AR}(p)$ Factor Dynamics under the $S$-Forward probability].

The $S$-forward Laplace transform of $x_{t+1}$, conditionally to $I_{t}=\left(\underline{x_{t}}\right)$, can be written in the following way:

$$
\begin{align*}
& E_{t}^{\mathbb{Q}^{(S)}}\left[\exp \left(u x_{t+1}\right)\right] \\
= & \frac{1}{B(t, S)} E_{t}^{\mathbb{Q}}\left[\exp \left(-r_{t}-\ldots-r_{S-1}+u x_{t+1}\right)\right] . \tag{5}
\end{align*}
$$

Now, starting from the identity

$$
\begin{equation*}
\log [B(t, T)]=\sum_{j=1}^{t} \rho(j, T)+\log [B(0, T)], \tag{6}
\end{equation*}
$$

we have in the risk-neutral world:

$$
\begin{equation*}
\log [B(t, T)]=-\sum_{j=1}^{t} \omega(j, T) \eta_{j}+\sum_{j=1}^{t} r_{j-1}-\frac{1}{2} \sum_{j=1}^{t} \omega(j, T)^{2}+\log [B(0, T)] . \tag{7}
\end{equation*}
$$

If we put $T=t$ in (7), we get a relation for the sum of the short-rates:

$$
\begin{equation*}
\sum_{j=1}^{t} r_{j-1}=\sum_{j=1}^{t} \omega(j, t) \eta_{j}+\frac{1}{2} \sum_{j=1}^{t} \omega(j, t)^{2}-\log [B(0, t)] \tag{8}
\end{equation*}
$$

that we can substitute in (7) to find the following alternative representation for the bond price process:
Proposition : For every fixed maturity $T$, the zero-coupon bond price process $B(\cdot, T)=[B(t, T), 0 \leq$ $t \leq T]$, under the risk-neutral probability $\mathbb{Q}$, can be written as :

$$
\begin{equation*}
B(t, T)=\frac{B(0, T)}{B(0, t)} \exp \left(-\sum_{j=1}^{t}[\omega(j, T)-\omega(j, t)] \eta_{j}-\frac{1}{2} \sum_{j=1}^{t}\left[\omega(j, T)^{2}-\omega(j, t)^{2}\right]\right) \tag{9}
\end{equation*}
$$

From relation (8), we have that, under the risk-neutral measure $\mathbb{Q}$, the sum of short-term rates in the above formula can be written as:

$$
\begin{aligned}
\sum_{j=t+1}^{S} r_{j-1}= & \sum_{j=1}^{S} r_{j-1}-\sum_{j=1}^{t} r_{j-1} \\
= & \sum_{j=1}^{S} \omega(j, S) \eta_{j}-\sum_{j=1}^{t} \omega(j, t) \eta_{j} \\
& \quad+\frac{1}{2}\left[\sum_{j=1}^{S} \omega(j, S)^{2}-\sum_{j=1}^{t} \omega(j, t)^{2}\right]+\log \left[\frac{B(0, t)}{B(0, S)}\right]
\end{aligned}
$$

and, consequently, we get:

$$
\begin{align*}
& E_{t}^{\mathbb{Q}^{(S)}}\left[\exp \left(u x_{t+1}\right)\right] \\
= & \frac{\exp \left[-\frac{1}{2}\left[\sum_{j=1}^{S} \omega(j, S)^{2}-\sum_{j=1}^{t} \omega(j, t)^{2}\right]-\sum_{j=1}^{t}[\omega(j, S)-\omega(j, t)] \eta_{j}-\log \left[\frac{B(0, t)}{B(0, S)}\right]\right]}{B(t, S)} \times \\
& E_{t}^{\mathbb{Q}}\left[\exp \left(-\sum_{j=t+2}^{S} \omega(j, S) \eta_{j}-\omega(t+1, S) \eta_{t+1}+u\left[\nu^{*}+\varphi^{*^{\prime}} X_{t}+\sigma^{*} \eta_{t+1}\right]\right)\right] \\
= & k_{t, S} E_{t}^{\mathbb{Q}}\left[\exp \left(-\sum_{j=t+2}^{S} \omega(j, S) \eta_{j}\right)\right] \times \\
= & k_{t, S}^{\prime} \exp \left[u\left[\nu^{*}+\varphi^{*^{\prime}} X_{t}-\sigma^{*} \omega(t+1, S)\right]+\frac{1}{2} u^{2} \sigma^{* 2}\right] ;
\end{align*}
$$

now, using (9) we have that

$$
\begin{aligned}
k_{t, S} & =\frac{\exp \left[-\frac{1}{2}\left[\sum_{j=1}^{S} \omega(j, S)^{2}-\sum_{j=1}^{t} \omega(j, t)^{2}\right]-\sum_{j=1}^{t}[\omega(j, S)-\omega(j, t)] \eta_{j}-\log \left[\frac{B(0, t)}{B(0, S)}\right]\right]}{B(t, S)} \\
& =\exp \left[-\frac{1}{2} \sum_{j=t+1}^{S} \omega(j, S)^{2}\right]
\end{aligned}
$$

and that

$$
k_{t, S}^{\prime}=k_{t, S} \exp \left[\frac{1}{2} \sum_{j=t+1}^{S} \omega(j, S)^{2}\right]=1 .
$$

Consequently, we recognize the conditional Laplace transform of the following Gaussian $\operatorname{AR}(p)$ stochastic process:

$$
x_{t+1}=\nu_{S}+\varphi_{1}^{*} x_{t}+\ldots+\varphi_{p}^{*} x_{t+1-p}+\sigma^{*} \xi_{t+1},
$$

with

$$
\nu_{S}=\nu^{*}-\sigma^{*} \omega(t+1, S),
$$

and where $\xi_{t+1} \sim \mathcal{I I N}(0,1)$ under $\mathbb{Q}_{S}$.

## Exercise ${ }^{\circ} 09$ [Zero-Coupon Bond Return Process under the $S$-Forward probability].

We have that:

$$
\begin{aligned}
\rho(t+1, T)= & \log [B(t+1, T)]-\log [B(t, T)] \\
= & c_{T-t-1}^{\prime} X_{t+1}+d_{T-t-1}-c_{T-t}^{\prime} X_{t}-d_{T-t} \\
= & c_{T-t-1}^{\prime}\left[X_{t+1}-\Phi^{*} X_{t}-\tilde{\nu}^{*}\right]+r_{t}-\frac{1}{2} c_{1, T-t-1}^{2} \sigma^{* 2} \\
= & c_{T-t-1}^{\prime}\left[\sigma^{*}\left(\tilde{\xi}_{t+1}-\omega(t+1, S) e_{1}\right)\right]+r_{t}-\frac{1}{2} c_{1, T-t-1}^{2} \sigma^{* 2} \\
= & r_{t}+\omega(t+1, T) \omega(t+1, S) \\
& \quad-\frac{1}{2} \omega(t+1, T)^{2}-\omega(t+1, T) \xi_{t+1}
\end{aligned}
$$

and the first part of the result is proved. Now, if we calculate $E_{t}^{\mathbb{Q}^{(S)}}\{\exp [\rho(t+1, T)]\}$ we have:

$$
\begin{aligned}
E_{t}^{\mathbb{Q}^{(S)}} \exp [\rho(t+1, T)] & =E_{t}^{\mathbb{Q}^{(S)}} \exp \left[r_{t}+\omega(t+1, T) \omega(t+1, S)-\frac{1}{2} \omega(t+1, T)^{2}-\omega(t+1, T) \xi_{t+1}\right] \\
& =\exp \left[r_{t}+\omega(t+1, T) \omega(t+1, S)-\frac{1}{2} \omega(t+1, T)^{2}\right] E_{t}^{\mathbb{Q}^{(S)}} \exp \left[-\omega(t+1, T) \xi_{t+1}\right] \\
& =\exp \left(r_{t}+\omega(t+1, T) \omega(t+1, S)\right)
\end{aligned}
$$

and therefore $\lambda_{t}^{\mathbb{Q}^{(S)}}(\rho, 1)=\log E_{t}^{\mathbb{Q}^{(S)}}\{\exp [\rho(t+1, T)]\}-r_{t}=\omega(t+1, T) \omega(t+1, S)$.
Exercise $\mathrm{N}^{\circ} 10$ [No-arbitrage restrictions for the short rate and spread].
We have a bivariate Gaussian VAR(1) ATSM given by:

$$
\begin{array}{ll}
x_{t+1} & \left.=\nu+\Phi x_{t}+\Sigma \varepsilon_{t+1}, \varepsilon_{t+1} \sim \mathcal{N}\left(0, I_{2}\right) \text { (under } \mathbb{P}\right) \\
M_{t, t+1} & =\exp \left[-\beta-\alpha^{\prime} x_{t}+\Gamma_{t}^{\prime} \varepsilon_{t+1}-\frac{1}{2} \Gamma_{t}^{\prime} \Gamma_{t}\right],(\mathrm{SDF}) \\
\Gamma_{t} & =\Gamma\left(x_{t}\right)=\left(\gamma_{o}+\gamma x_{t}\right), \\
R(t, h) & =-\frac{C_{h}^{\prime}}{h} x_{t}-\frac{D_{h}}{h}, \\
C_{h} & =-\alpha+(\Phi+\Sigma \gamma)^{\prime} C_{h-1}=-\alpha+\Phi^{*^{\prime}} C_{h-1}, \\
D_{h} & =-\beta+C_{h-1}^{\prime}\left(\nu+\Sigma \gamma_{o}\right)+\frac{1}{2} C_{h-1}^{\prime}\left(\Sigma \Sigma^{\prime}\right) C_{h-1}+D_{h-1}, \\
C_{0}=0, D_{0}=0, &
\end{array}
$$

where $x_{t}=\left(r_{t}, S_{t}\right)^{\prime}$, with $r_{t}=R(t, t+1)$ the yield with the shortest maturity in our data base (it is the short rate) and $S_{t}=R_{t}-r_{t}$ the spread between the long rate (the yield with the longest maturity in our data base) and the short rate.

I have to impose no-arbitrage restrictions on both components of the factor $\left(x_{t}\right)$ given that they contains yields at different maturities.
First, I have to impose that $R(t, t+1)=r_{t}$ : this condition generates the no-arbitrage restriction $R(t, 1)=\beta+\alpha^{\prime} x_{t}=\beta+\alpha_{1} r_{t}+\alpha_{2} S_{t}=r_{t}$. Clearly, $r_{t}=\beta+\alpha^{\prime} x_{t}=\beta+\alpha_{1} r_{t}+\alpha_{2} S_{t}$ if and only if $\beta=0, \alpha_{1}=1$ and $\alpha_{2}=0$. These conditions are equivalent to $C_{1}=-(1,0)$ and $D_{1}=0$.
Second, let us denote by $H$ the longest maturity in our data base. I have to impose that $R(t, t+H)=$ $R_{t}$ for any $t$. In this case we have:

$$
\begin{aligned}
& -\frac{1}{H}\left[C_{1, H} r_{t}+C_{2, H} S_{t}+D_{H}\right]=R_{t} \\
& \Leftrightarrow C_{1, H} r_{t}+C_{2, H}\left(R_{t}-r_{t}\right)+D_{H}=-H R_{t} \\
& \Leftrightarrow\left[C_{1, H}-C_{2, H}\right] r_{t}+C_{2, H} R_{t}+D_{H}=-H R_{t} \\
& \Leftrightarrow C_{1, H}=C_{2, H}, \quad C_{2, H}=-H, \quad D_{H}=0,
\end{aligned}
$$

that is $C_{H}=-H(1,1)^{\prime}$ and $D_{H}=0$.

