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Exercise N◦ 01 [Exponential-affine ZCB Pricing Formula].

Given that Mt,t+1 is exponential-affine in εt+1 (i.e. xt+1) and that the conditional Laplace transform
of xt+1 is exponential-affine in the conditioning variable (xt) we suggest that the ZCB pricing
formula at date t be an exponential-affine function of xt and then “we check if it works”. We
proceed in the following way:

a) We suggest B(t, t + h) = exp(c′hXt + dh) and we (equivalently) rewrite the pricing formula
in terms of the payoff B(t+ 1, t+ h) = exp(c′h−1Xt+1 + dh−1):

B(t, t+ h) = exp(c′hXt + dh)

= Et[Mt,t+1 · · ·Mt+h−1,t+h]

= Et[Mt,t+1B(t+ 1, t+ h)]

= Et

[
exp

(
−β − α′Xt + Γt εt+1 − 1

2 Γ2
t

)
exp(c′h−1Xt+1 + dh−1)

]
,

b) we do the algebra (calculating the conditional Laplace transform) obtaining:

B(t, t+ h)

= exp(ch
′Xt + dh)

= exp
[
−β − α′Xt − 1

2Γ2
t + dh−1

]
× Et[exp

(
Γtεt+1 + c′h−1Xt+1

)
]

= exp
[
−β − α′Xt − 1

2Γ2
t + dh−1 + c′h−1(ΦXt + ν̃)

]
× Et[exp (Γt + σc1,h−1)εt+1)]

= exp [(−α+ Φ′ch−1 + c1,h−1σγ)′Xt

+ (−β + c1,h−1ν + 1
2c

2
1,h−1σ

2 + γoc1,h−1σ + dh−1)
]
,

c) and by identifying the coefficients we find the recursive relations for ch and dh characterizing
the pricing formula B(t, t+ h) = exp(c′hXt + dh).
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Now, the last elements we need to completely determine the pricing formula are the starting con-
ditions for ch and dh. We proceed as follows:

given that, by definition of ZCB, we have B(t, t) = 1, then

exp(c′0Xt + d0) = 1 ⇐⇒ (c′0Xt + d0) = 0 ∀ Xt ⇐⇒ c0 = 0 , d0 = 0 .

We can also equivalently write:

given that, by definition of ZCB, we have B(t, t+ 1) = exp(− rt), then

exp(c′1Xt + d1) = exp(− rt) ⇐⇒ (c′1Xt + d1) = −rt ∀ Xt ⇐⇒ c1 = −α , d1 = −β .

Exercise N◦ 02 [Identification Issue in latent factor Gaussian ATSMs].

We have the following family of Gaussian AR(p) Factor-Based term structure models:

xt+1 = ν + ϕxt + σεt+1 , εt+1 ∼ N (0, 1) (under P)

Mt,t+1 = exp
[
−β − αxt + Γtεt+1 − 1

2Γ2
t

]
, (SDF)

rt = β + αxt , Γt = Γ(xt) = (γo + γxt) ,

R(t, h) = −ch
h
xt −

dh
h
,

ch = −α+ ϕch−1 + ch−1σγ = −α+ (ϕ+ σγ)ch−1 ,

dh = −β + ch−1(ν + γoσ) + 1
2c

2
h−1σ

2 + dh−1 ,

c0 = 0, d0 = 0 .

We have seen that the yield-to-maturity formula R(t, h) is completely determined by the specifica-
tion of the historical dynamics of xt+1 (Gaussian AR(1)) and by the specification of the one-period
SDF Mt,t+1 (exponential-affine in εt+1). The identification issue, associated to the specification
of yield-to-maturity formula, is therefore given by the fact that different (infinitely many) set of
parameter values (ν, ϕ, σ) and (β, α, γo, γ) can generate the same theoretical R(t, h). This means
that, from a given time series of observations Ro(t, h), we cannot detect the unique set of parame-
ters such that the distance between R(t, h) and Ro(t, h) is minimized, given that several different
set of parameters determine the same R(t, h).

More formally : for arbitrary real constants µ1 and µ2, if we replace:

a) xt by x̄t = µ1 + µ2xt (any Gaussian stochastic process can be represented as an affine trans-
formation of the centered and normalized one),

b.1) γ by
γ

µ2
,
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b.2) γo by γo −
µ1
µ2
γ′e,

b.3) α by
α

µ2

b.4) and β by β − µ1
µ2
α′e.

we obtained the same SDF Mt,t+1 dynamics (depending on the factor dynamics) and therefore
we generate the same yield R(t, h) (remember that B(t, h) = Et[Mt,t+1 . . .Mt+h−1,t+h]). In other
words, for a starting parametric specification of xt and Mt,t+1 = Mt,t+1(xt), we have that, after the
parametric transformations a), b.1)−b.4), we obtain a new latent factor x̄t and SDF M̄t,t+1(x̄t) such
that Mt,t+1(xt) = Mt,t+1(x̄t) for any t. Thus, Et[Mt,t+1 . . .Mt+h−1,t+h] = Et[M̄t,t+1 . . . M̄t+h−1,t+h]
for any t and h and the theoretical yields are therefore the same.
If xt is not directly observed, we can assume for instance, as far as the term structure is concerned,
that ν = 0 and σ = 1, or β = 0 and α = 1. In this way the identification problem is solved.
This result is easily generalized to the case of a Gaussian AR(p) process [see Monfort and Pegoraro
(2007), Section 2.4].

Exercise N◦ 03 [Excess Returns of Zero-Coupon Bonds].

Given that B(t, T ) = exp(c′T−tXt + dT−t), we can write:

ρ(t+ 1, T ) = log [B(t+ 1, T )]− log [B(t, T )]

= c′T−t−1Xt+1 + dT−t−1 − c′T−tXt − dT−t

= c′T−t−1 [Xt+1 − ΦXt − ν̃] + (β + α′Xt)− σc1,T−t−1(γo + γ′Xt)− 1
2c

2
1,T−t−1σ

2

= (c1,T−t−1σ)εt+1 + (β + α′Xt)− σc1,T−t−1(γo + γ′Xt)− 1
2c

2
1,T−t−1σ

2 .

Now, we have that, under the absence of arbitrage rt = (β + α′Xt) and, consequently, the result is
proved.

Exercise N◦ 04 [Risk-Neutral Laplace Transform of the Gaussian AR(p) Factor].

The risk-neutral Laplace transform of xt+1, conditionally to xt, is given by:

EQ
t [exp(uxt+1)] = Et

[
Mt,t+1

Et(Mt,t+1)
exp(uxt+1)

]
= Et

[
exp

(
(γo + γ′Xt) εt+1 − 1

2 (γo + γ′Xt)
2 + uxt+1

)]
= exp

[
u(ν + ϕ′Xt)− 1

2(γo + γ′Xt)
2
]

Et[exp((γo + γ′Xt + uσ)εt+1)]

= exp
[
u[(ν + σγo) + (ϕ+ σγ)′Xt] + 1

2u
2σ2
]
,
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where ϕ = [ϕ1, . . . , ϕp]
′.

Exercise N◦ 05 [Risk-Neutral Zero-Coupon Bond Return Process].

We have that

ρ(t+ 1, T ) = log [B(t+ 1, T )]− log [B(t, T )]

= c′T−t−1Xt+1 + dT−t−1 − c′T−tXt − dT−t

= c′T−t−1Xt+1 − (−α′ + c′T−t−1Φ
∗)Xt + β − c1,T−t−1ν∗ − 1

2c
2
1,T−t−1σ

2

= c′T−t−1 [Xt+1 − Φ∗Xt − ν̃∗] + rt − 1
2c

2
1,T−t−1σ

2

= rt − 1
2ω(t+ 1, T )2 − ω(t+ 1, T )ηt+1

and the first part of the result is proved. Now, if we calculate EQ
t exp [ρ(t+ 1, T )] we have:

EQ
t exp [ρ(t+ 1, T )] = EQ

t exp
[
rt − 1

2ω(t+ 1, T )2 − ω(t+ 1, T )ηt+1

]
= exp[rt − 1

2ω(t+ 1, T )2]EQ
t exp[−ω(t+ 1, T )ηt+1] = exp(rt)

and therefore λQt (ρ, 1) = logEQ
t exp [ρ(t+ 1, T )]− rt = 0.

Exercise N◦ 06 [Yield Curve Shapes, Risk-Neutral Stationarity and Long Rates].

The different shapes that the yield curve formula R(t, t+ h) = −1

h
[c′hXt + dh] is able to reproduce

depend crucially on the system of difference equations (ch, dh):
ch = Φ∗

′
ch−1 − α

dh = −β + c1,h−1ν
∗ + 1

2c
2
1,h−1σ

2 + dh−1 ,

with initial conditions c0 = 0 and d0 = 0. Let us consider in that exercise the case where xt+1

follows a Gaussian AR(1) and AR(2) process respectively.

p = 1 Let us consider that xt = rt follows a Gaussian AR(1) process. In this case ch satisfies the
fist-order difference equation:

ch = −1 + (ϕ+ σγ)ch−1 ,

where σ > 0, γ and |ϕ| < 1 are scalar coefficients, and with a general solution, denoted c(h),
given by:

c(h) = −
[

1

1− (ϕ+ σγ)

]
[1− (ϕ+ σγ)h] = −

[
1− ϕ∗h

1− ϕ∗

]
,

which tends, for h increasing to infinity, to the limit:
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c = −
[

1

1− ϕ∗

]
,

under the condition |ϕ∗| < 1, where ϕ∗ = (ϕ + σγ) is the unique eigenvalue of the (scalar)
matrix Φ∗

′
. This means that this stability condition of the difference equation ch coincide

with the stationarity condition of the AR(1) process xt+1 under the risk-neutral probability
Q.

Now, observe that this condition implies c(h) < 0 for every h > 0. In addition, if 0 < ϕ+σγ <
1 (respectively, −1 < ϕ + σγ < 0), the function c(h) converges in decreasing (respectively,
oscillating) towards c.

With regard to dh, it easy to verify that :

d(h) = −
[

ν∗

1− ϕ∗

]
(h− 1) +

[
ϕ∗ − ϕ∗h

1− ϕ∗

] [
ν∗

1− ϕ∗
− σ2

(1− ϕ∗)2

]

+
σ2

2(1− ϕ∗)2

[
(h− 1) +

ϕ∗2 − ϕ∗2h

1− ϕ∗2

]
.

Consequently, the yield to maturity formula, for p = 1, is given by :

R(t, t+ h) =
1

h

[
1− ϕ∗h

1− ϕ∗

]
rt +

(h− 1)

h

[
ν∗

1− ϕ∗

]
− 1

h

[
ϕ∗ − ϕ∗h

1− ϕ∗

] [
ν∗

1− ϕ∗
− σ2

(1− ϕ∗)2

]

− σ2

2h(1− ϕ∗)2

[
(h− 1) +

ϕ∗2 − ϕ∗2h

1− ϕ∗2

]
.

p = 2 If the factor xt = rt is a Gaussian AR(2) process, the recursive equation for ch is described
by a first-order (2× 2) system of difference equations of the following type:[

c1,h
c2,h

]
−
[
ϕ1 + σγ1 1
ϕ2 + σγ2 0

] [
c1,h−1
c2,h−1

]
= −

[
1
0

]
; (1)

substituting the first equation into the second, we find for c1,h+1 the following second-order
linear difference equation:

c1,h+1 = −1 + ϕ∗1c1,h + ϕ∗2c1,h−1 , (2)

where ϕ∗1 = (ϕ1 + σγ1) and ϕ∗2 = (ϕ1 + σγ2); under the condition that the two eigenvalues
(λ1, λ2) of Φ∗

′
(or the inverse of the roots of 1 − ϕ∗1L − ϕ∗2L2) are not equal and less than

unity in modulus, and regardless of their real or complex nature, the limit of c1,h is given by:

c1 = − 1

(1− λ1)(1− λ2)
;

these conditions can equivalently be expressed in the following way : ϕ∗1+ϕ∗2 < 1, ϕ∗2−ϕ∗1 < 1
and |ϕ∗2| < 1. These are exactly the stationarity conditions of the Gaussian AR(2) process
xt+1 under the risk-neutral probability Q.
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If we substitute c1 into the second equation of system (1) we find, consequently, the limit of
c2,h:

c2 = −ϕ∗2
1

(1− λ1)(1− λ2)
.

The recursive equation characterizing dh is given by:

dh =


0 for h = 1 ,

ν∗
h−1∑
j=1

cj +
1

2
σ2

h−1∑
j=1

c2j , ∀h ≥ 2 ,

that is, it is a function of (some parameter and) cj for j ∈ {1, . . . , h− 1}.

Exercise N◦ 07.

Let us consider again the system of difference equations (ch, dh):
ch = Φ∗

′
ch−1 − α

dh = −β + c1,h−1ν
∗ + 1

2c
2
1,h−1σ

2 + dh−1 ,

with initial conditions c0 = 0 and d0 = 0. Let us consider in that exercise the general case
where xt+1 follows a Gaussian AR(p) process. In this case, it is well known that the steady state
C = [ c1, . . . , cp ]′ of the system ch is given, I denoting the (p× p) identity matrix, by:

C = −(I − Φ∗
′
)−1α , (3)

under the (stability) condition that the p eigenvalues (λ1, . . . , λp) of Φ∗
′

are all smaller than unity
in modulus, or, equivalently, that the risk-neutral dynamics of (xt) is stationary, or that the roots
of the risk-neutral autoregressive polynomial (of degree p) Ψ∗(L) = 1 − ϕ∗1L − . . . − ϕ∗pLp have a
modulus larger than one (given that these roots are the inverse of the eigenvalues). More precisely,
the system of equations ch can be rewritten as:

c1,h = ϕ∗1c1,h−1 + c2,h−1 − α1

c2,h = ϕ∗2c1,h−1 + c3,h−1 − α2
...

cp−1,h = ϕ∗p−1c1,h−1 + cp,h−1 − αp−1

cp,h = ϕ∗pc1,h−1 − αp ,

and if we substitute the pth equation in the (p− 1)th for cp,h−1, and then the (p− 1)th equation in
the (p− 2)th for cp−1,h−1, and so on till the first one, we find that c1,h is described by the following
pth order linear difference equation :

Ψ∗(L)c1,h = −
p∑

i=1

αi ,
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where Ψ∗(L) = 1− ϕ∗1L− . . .− ϕ∗pLp operates here to h. The remaining equations are given by :

cp−j,h = −
j∑

i=0

αp−i +

j∑
i=0

ϕ∗p−ic1,h−j+i−1 , j ∈ {0, . . . , p− 2} .

Given the risk-neutral stationary assumption on the process (xt), the relations cp−j,h, for j ∈
{0, . . . , p− 1}, converge at an exponential rate with possible oscillations, when h→∞. The limits
are :

c1 = −
∑p

i=1 αi

Ψ∗(1)
,

cp−j = −
j∑

i=0

αp−i + c1

j∑
i=0

ϕ∗p−i , j ∈ {0, . . . , p− 2} .

Note that Ψ∗(1) > 0 because of the stability conditions.

With regard to dh, its equation gives the specification of the long-term yield R(t,∞) as a
function of the steady state c1. Indeed, the difference equation dh can be written (assuming the
identification condition β = 0, as we have seen in Exercise N◦ 02) as:

dh =


0 for h = 1 ,

ν∗
h−1∑
j=1

c1,j +
1

2
σ2

h−1∑
j=1

c21,j , ∀h ≥ 2 ,
(4)

and, under the stability of the system ch, we have from the yield-to-maturity formula that:

R(t,∞) = lim
h→+∞

R(t, h)

= lim
h→+∞

−ch
h

′
Xt −

ν∗

h

h−1∑
j=1

c1,j −
σ2

2h

h−1∑
j=1

c21,j = −c1ν∗ −
1

2
(c1σ)2 ,

which is positive under the condition
[
ν∗ + 1

2σ
2c1
]
> 0.

The shape of ch (and thus the yield curve shapes), for h varying, depends on whether the
eigenvalues (λ1, . . . , λp) of Φ∗

′
are real or complex, single or multiple, larger or smaller than one in

modulus.
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Exercise N◦ 08 [Gaussian AR(p) Factor Dynamics under the S-Forward probability].

The S-forward Laplace transform of xt+1, conditionally to It = (xt), can be written in the
following way:

EQ(S)

t [exp(uxt+1)]

=
1

B(t, S)
EQ

t [exp(− rt − . . .− rS−1 + uxt+1)] .

(5)

Now, starting from the identity

log[B(t, T )] =
∑t

j=1 ρ(j, T ) + log[B(0, T )] , (6)

we have in the risk-neutral world:

log[B(t, T )] = −
∑t

j=1 ω(j, T )ηj +
∑t

j=1 rj−1 −
1
2

∑t
j=1 ω(j, T )2 + log[B(0, T )] . (7)

If we put T = t in (7), we get a relation for the sum of the short-rates:∑t
j=1 rj−1 =

∑t
j=1 ω(j, t)ηj + 1

2

∑t
j=1 ω(j, t)2 − log[B(0, t)] , (8)

that we can substitute in (7) to find the following alternative representation for the bond price
process:

Proposition : For every fixed maturity T , the zero-coupon bond price processB(·, T ) = [B(t, T ), 0 ≤
t ≤ T ], under the risk-neutral probability Q, can be written as :

B(t, T ) = B(0, T )
B(0, t) exp

(
−
∑t

j=1[ω(j, T )− ω(j, t)] ηj − 1
2

∑t
j=1[ω(j, T )2 − ω(j, t)2]

)
. (9)

From relation (8), we have that, under the risk-neutral measure Q, the sum of short-term rates in
the above formula can be written as:

S∑
j=t+1

rj−1 =

S∑
j=1

rj−1 −
t∑

j=1

rj−1

=

S∑
j=1

ω(j, S)ηj −
t∑

j=1

ω(j, t)ηj

+
1

2

 S∑
j=1

ω(j, S)2 −
t∑

j=1

ω(j, t)2

+ log

[
B(0, t)

B(0, S)

]
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and, consequently, we get:

EQ(S)

t [exp(uxt+1)]

=
exp

[
−1

2

[∑S
j=1 ω(j, S)2 −

∑t
j=1 ω(j, t)2

]
−
∑t

j=1 [ω(j, S)− ω(j, t)] ηj − log
[
B(0,t)
B(0,S)

]]
B(t, S)

×

EQ
t

exp

− S∑
j=t+2

ω(j, S)ηj − ω(t+ 1, S)ηt+1 + u[ν∗ + ϕ∗
′
Xt + σ∗ηt+1]



= kt,SE
Q
t

exp

− S∑
j=t+2

ω(j, S)ηj

×
EQ

t

[
exp

(
u(ν∗ + ϕ∗

′
Xt) + (uσ∗ − ω(t+ 1, S))ηt+1

)]
= k′t,S exp

[
u
[
ν∗ + ϕ∗

′
Xt − σ∗ω(t+ 1, S)

]
+ 1

2u
2σ∗2

]
;

(10)
now, using (9) we have that

kt,S =
exp

[
−1

2

[∑S
j=1 ω(j, S)2 −

∑t
j=1 ω(j, t)2

]
−
∑t

j=1 [ω(j, S)− ω(j, t)] ηj − log
[
B(0,t)
B(0,S)

]]
B(t, S)

= exp

−1

2

S∑
j=t+1

ω(j, S)2


and that

k′t,S = kt,S exp

1

2

S∑
j=t+1

ω(j, S)2

 = 1 .

Consequently, we recognize the conditional Laplace transform of the following Gaussian AR(p)
stochastic process:

xt+1 = νS + ϕ∗1xt + . . . + ϕ∗pxt+1−p + σ∗ξt+1 ,

with
νS = ν∗ − σ∗ω(t+ 1, S) ,

and where ξt+1 ∼ IIN (0, 1) under QS .
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Exercise N◦ 09 [Zero-Coupon Bond Return Process under the S-Forward probability].

We have that:

ρ(t+ 1, T ) = log [B(t+ 1, T )]− log [B(t, T )]

= c′T−t−1Xt+1 + dT−t−1 − c′T−tXt − dT−t

= c′T−t−1 [Xt+1 − Φ∗Xt − ν̃∗] + rt − 1
2c

2
1,T−t−1σ

∗2

= c′T−t−1

[
σ∗
(
ξ̃t+1 − ω(t+ 1, S)e1

)]
+ rt − 1

2c
2
1,T−t−1σ

∗2

= rt + ω(t+ 1, T )ω(t+ 1, S)

− 1
2ω(t+ 1, T )2 − ω(t+ 1, T )ξt+1 ,

and the first part of the result is proved. Now, if we calculate EQ(S)

t {exp [ρ(t+ 1, T )]} we have:

EQ(S)

t exp [ρ(t+ 1, T )] = EQ(S)

t exp
[
rt + ω(t+ 1, T )ω(t+ 1, S)− 1

2ω(t+ 1, T )2 − ω(t+ 1, T )ξt+1

]
= exp[rt + ω(t+ 1, T )ω(t+ 1, S)− 1

2ω(t+ 1, T )2]EQ(S)

t exp[−ω(t+ 1, T )ξt+1]

= exp(rt + ω(t+ 1, T )ω(t+ 1, S))

and therefore λQ
(S)

t (ρ, 1) = logEQ(S)

t {exp [ρ(t+ 1, T )]} − rt = ω(t+ 1, T )ω(t+ 1, S).

Exercise N◦ 10 [No-arbitrage restrictions for the short rate and spread].

We have a bivariate Gaussian VAR(1) ATSM given by:

xt+1 = ν + Φxt + Σεt+1 , εt+1 ∼ N (0, I2) (under P)

Mt,t+1 = exp
[
−β − α′xt + Γ′tεt+1 − 1

2Γ′tΓt

]
, (SDF)

Γt = Γ(xt) = (γo + γ xt) ,

R(t, h) = −Ch

h

′
xt −

Dh

h
,

Ch = −α+ (Φ + Σγ)′Ch−1 = −α+ Φ∗
′
Ch−1 ,

Dh = −β + C ′h−1(ν + Σγo) + 1
2C
′
h−1(ΣΣ′)Ch−1 +Dh−1 ,

C0 = 0, D0 = 0 ,

where xt = (rt, St)
′, with rt = R(t, t+ 1) the yield with the shortest maturity in our data base (it

is the short rate) and St = Rt − rt the spread between the long rate (the yield with the longest
maturity in our data base) and the short rate.
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I have to impose no-arbitrage restrictions on both components of the factor (xt) given that they
contains yields at different maturities.
First, I have to impose that R(t, t + 1) = rt: this condition generates the no-arbitrage restriction
R(t, 1) = β + α′xt = β + α1rt + α2St = rt. Clearly, rt = β + α′xt = β + α1rt + α2St if and only if
β = 0, α1 = 1 and α2 = 0. These conditions are equivalent to C1 = −(1, 0) and D1 = 0.
Second, let us denote by H the longest maturity in our data base. I have to impose that R(t, t+H) =
Rt for any t. In this case we have:

− 1

H
[C1,H rt + C2,H St +DH ] = Rt

⇔ C1,H rt + C2,H (Rt − rt) +DH = −HRt

⇔ [C1,H − C2,H ] rt + C2,H Rt +DH = −HRt

⇔ C1,H = C2,H , C2,H = −H , DH = 0 ,

that is CH = −H (1, 1)′ and DH = 0.
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