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Exercise N° 01 [Exponential-affine ZCB Pricing Formula].

Given that My ;41 is exponential-affine in €441 (i.e. x441) and that the conditional Laplace transform
of x44+1 is exponential-affine in the conditioning variable (x;) we suggest that the ZCB pricing
formula at date ¢t be an exponential-affine function of x; and then “we check if it works”. We
proceed in the following way:

a) We suggest B(t,t + h) = exp(c), X; + dj,) and we (equivalently) rewrite the pricing formula
in terms of the payoff B(t 4+ 1,t+ h) = exp(c},_; Xi+1 + dp—1):

B(t,t+h) = exp(c, X;+dp)
= Ey[Mi1-- Myph—11+h)
= EiM;s1B(t+1,t+ h)]
= Efexp(—B— o Xy + ey — 3T7) exp(ch_q Xes1 +dp—1)]
b) we do the algebra (calculating the conditional Laplace transform) obtaining:
B(t,t+ h)
= explon'Xi + di)
= exp [—B —od X — %F% + dh—l] x Eilexp (Ft£t+1 + CZ_1Xt+1)]
= exp[-B—aXy— 37 +dy_1+¢,_(2Xy 4+ 7)] x Elexp (¢ + oc1p-1)et4+1)]
= exp[(—a+ Pepq + e p—107) Xy

+ (—ﬁ + C1 h—1V + %C%,h7102 + YoC1,h—10 + dh—l)} ,

¢) and by identifying the coefficients we find the recursive relations for ¢; and dj, characterizing
the pricing formula B(t,t + h) = exp(c), X; + dp).



Now, the last elements we need to completely determine the pricing formula are the starting con-
ditions for ¢; and dj,. We proceed as follows:

given that, by definition of ZCB, we have B(t,t) = 1, then

exp(ch Xy +do) =1 <= (¢{ Xt +do) =0V X; <= ¢9=0, dp=0.
We can also equivalently write:

given that, by definition of ZCB, we have B(t,t + 1) = exp(—r¢), then

exp(d) Xy +dy) =exp(—r) <= (, Xi+d))=—r VX, <=c1=—a, d =—4.

Exercise N° 02 [Identification Issue in latent factor Gaussian ATSMs].

We have the following family of Gaussian AR(p) Factor-Based term structure models:

Tig1 = v+ oxt + 041, €41 ~N(0,1) (under P)
M1 = exp [—5 —owy + Iigpp1 — %F%] , (SDF)

T = ftoary, I'i=T(x) = (90 +721),

R(t, h) = g%,

Ch = —a+tygcp1+cp107=—a+(p+oy)ep-1,
dp, = —B+op1(V+70)+ 5t 0% +dp1,
co=0,dy=0.

We have seen that the yield-to-maturity formula R(t, h) is completely determined by the specifica-
tion of the historical dynamics of z;41 (Gaussian AR(1)) and by the specification of the one-period
SDF M; 11 (exponential-affine in e;41). The identification issue, associated to the specification
of yield-to-maturity formula, is therefore given by the fact that different (infinitely many) set of
parameter values (v, ¢,0) and (5, @,7,,7) can generate the same theoretical R(¢,h). This means
that, from a given time series of observations R°(t, h), we cannot detect the unique set of parame-
ters such that the distance between R(t,h) and R°(t,h) is minimized, given that several different
set of parameters determine the same R(t, h).

More formally : for arbitrary real constants pu; and ue, if we replace:

a) z; by ; = p1 + pexy (any Gaussian stochastic process can be represented as an affine trans-
formation of the centered and normalized one),

b.1) v by =,
K2



b.4) and 8 by f — B e
12

we obtained the same SDF M, ;1 dynamics (depending on the factor dynamics) and therefore
we generate the same yield R(t,h) (remember that B(t,h) = Ei[Mysi1 ... Mytp—14+1]). In other
words, for a starting parametric specification of z; and M 41 = M;441(2z¢), we have that, after the
parametric transformations a), b.1) —b.4), we obtain a new latent factor Z; and SDF M; ;.1 (%) such
that Mt,t+1 (Cﬂt) = Mt,t+1(ft> for any ¢. Thus, F; [Mt,t+1 e Mt—l—h—l,t-{—h] = F; [Mt,t+1 e Mt—l—h—l,t-{—h]
for any ¢ and h and the theoretical yields are therefore the same.

If x; is not directly observed, we can assume for instance, as far as the term structure is concerned,
that v =0 and ¢ = 1, or § = 0 and a = 1. In this way the identification problem is solved.
This result is easily generalized to the case of a Gaussian AR(p) process [see Monfort and Pegoraro
(2007), Section 2.4].

Exercise N° 03 [Excess Returns of Zero-Coupon Bonds].
Given that B(t,T) = exp(cr_, X + dr—t), we can write:
p(t+1,T) = log[B(t+1,T)] —log[B(t, T)]
= cp 1 Xep1 Hdr—i—1 —cp_ Xp —dr—y
= oy (X1 — X — 0+ (B+Xe) — ocrr1(70 + 7' Xe) — 56 0107
= (c1,r—1-10)et41 + (B+ ' Xy) —ocir—t—1(Yo + 7' Xt) — %CiT_t_lUQ .

Now, we have that, under the absence of arbitrage r = (8 4+ o/ X;) and, consequently, the result is
proved.

Exercise N° 04 [Risk-Neutral Laplace Transform of the Gaussian AR(p) Factor].
The risk-neutral Laplace transform of x; 1, conditionally to ¢, is given by:
Bllexp(uzen)] = Fr | gty expluzes) |
= E [exp ((’Yo + 7' Xt)er1 — % (Yo +7'X1)? + uﬂ?t+1)]
= exp [u(v+ ¢'Xy) — $(70 + ¥ X1)?]
Eyfexp((7o + 7' Xt + uo)ers1)]

= exp [u[(u +07,) + (¢ +07) Xy + %uQJQ] ,



where p = [¢1,...,pp).
Exercise N° 05 [Risk-Neutral Zero-Coupon Bond Return Process].
We have that
p(t+1,T) = log[B(t+1,T)]—log[B(t, T)]
= py 1 Xep1 Hdr—i—1 — ¢ Xy —dp—y

_ / / / * * 1.2 2
= oy X1 — (= + 1 P)Xe + B —crr—v — 3¢y 10

_ / * ~ % 1.2 2
= Iy g X1 =@ Xy =0+ — 50004 10

= n— 3wlt+1,7)? —wt+1,T)nm
and the first part of the result is proved. Now, if we calculate Efg exp [p(t + 1, T')] we have:
Ei@ explp(t+1,T)] = Ei@ exp [rt — %w(t +1,7)% — w(t+ 1,T)17t+1}
= explr — sw(t+1,T)? EL expl—w(t + 1,T)ni1] = exp(ry)
and therefore A?(p, 1) =log Ei@ exp[p(t+1,T)] —r =0.

Exercise N° 06 [Yield Curve Shapes, Risk-Neutral Stationarity and Long Rates].

1
The different shapes that the yield curve formula R(t,t+ h) = —E[C%Xt + dp] is able to reproduce
depend crucially on the system of difference equations (¢, dp,):
cn = ey —a
d, = —-p+ Cl,h—ly* + %C%,h7102 +dp_1,

with initial conditions ¢ = 0 and dy = 0. Let us consider in that exercise the case where z;11
follows a Gaussian AR(1) and AR(2) process respectively.

p =1 Let us consider that z; = r; follows a Gaussian AR(1) process. In this case ¢, satisfies the
fist-order difference equation:

ch = —1+(p+oy)en-1,

where o > 0, v and |¢| < 1 are scalar coefficients, and with a general solution, denoted c(h),
given by:

) = - | - e = [F2E7]

which tends, for A increasing to infinity, to the limit:



_ 1
c=— ,
1—p*

under the condition |¢*| < 1, where ¢* = (¢ + o7) is the unique eigenvalue of the (scalar)
matrix ®*'. This means that this stability condition of the difference equation ¢ coincide
with the stationarity condition of the AR(1) process z;4; under the risk-neutral probability
Q.

Now, observe that this condition implies ¢(h) < 0 for every h > 0. In addition, if 0 < o407y <
1 (respectively, —1 < ¢ + oy < 0), the function c¢(h) converges in decreasing (respectively,
oscillating) towards €.

With regard to dj, it easy to verify that :

d(h) = _[1”*@*}(h_1)+{90;_z:h] [12*_(10;)4
2

*2 *2h

o ©* — @

+—"  |(h—1 +}.
2ﬂ—¢ﬂ2P ) 1 —p*2

Consequently, the yield to maturity formula, for p = 1, is given by :

wecen = g [ =5 ] B ] - R [ e

h|l1—p* h 1—p* hl 1—p* 1—¢* (1 —¢*)?
2 *2 _, x2h
7 |-+ =¥
2h(1 — p*)? 1 — p*2

If the factor z; = ry is a Gaussian AR(2) process, the recursive equation for ¢, is described
by a first-order (2 x 2) system of difference equations of the following type:

[Cl,h] _ [901 +om 1] [Cl,h—l] _ H . (1)
c2h w2 +0oy2 0] [can-1 0] ’

substituting the first equation into the second, we find for ¢ 11 the following second-order
linear difference equation:

Ciht1 = —1+ @i+ @5t p-1, (2)

where ¢} = (¢1 + 0om1) and @5 = (@1 + 072); under the condition that the two eigenvalues
(A1, A2) of @ (or the inverse of the roots of 1 — ¢iL — @4L?) are not equal and less than
unity in modulus, and regardless of their real or complex nature, the limit of ¢; 5, is given by:

— 1 .
(1=M)(1=Ag)’

Cl1 =

these conditions can equivalently be expressed in the following way : @] +¢5 < 1, 95 —¢] <1
and |¢3| < 1. These are exactly the stationarity conditions of the Gaussian AR(2) process
Z¢y+1 under the risk-neutral probability Q.



If we substitute ¢; into the second equation of system (1) we find, consequently, the limit of
027h:

_ 1
CTTRIIN)A -

The recursive equation characterizing dj, is given by:

0 for h=1,
dp = *h71 1 2h71 )
v jz;cj—FQa ;Cj7 Vh > 2,
that is, it is a function of (some parameter and) ¢; for j € {1,...,h —1}.

Exercise N° 07.

Let us consider again the system of difference equations (¢, dp,):

= Deopl—a
1.2 2
dh = —,8 + Cl,h—IV* + §Cl,h—10 + dh—l y
with initial conditions ¢g = 0 and dy = 0. Let us consider in that exercise the general case

where 441 follows a Gaussian AR(p) process. In this case, it is well known that the steady state
C = [¢1,...,6 of the system ¢, is given, I denoting the (p x p) identity matrix, by:

C=—-(I-9")""a, (3)

under the (stability) condition that the p eigenvalues (A1,...,\,) of ®* are all smaller than unity
in modulus, or, equivalently, that the risk-neutral dynamics of (x¢) is stationary, or that the roots
of the risk-neutral autoregressive polynomial (of degree p) U*(L) = 1 — 7L — ... — ¢, LP have a
modulus larger than one (given that these roots are the inverse of the eigenvalues). More precisely,
the system of equations ¢, can be rewritten as:

CLh = picih-1+Cap-1— Q1
*
C2.h = Y€1 h—1 T C3p—1 — Q2
Cp—1h = Pp_1CLh—1+ Cphr-1— Qp_1
_ *
Cp,h = $pClh—1 — Ap,

and if we substitute the p* equation in the (p — 1) for cp.h—1, and then the (p — 1)*" equation in
the (p —2) for ¢p—1,h—1, and so on till the first one, we find that ¢; ;, is described by the following
pth order linear difference equation :

p
\I/*(L)Cljh = — Z a; ,
=1
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where U*(L) =1 — ¢]L — ... — ¢y LP operates here to h. The remaining equations are given by :

J J
Cp—jh = — Z Qp—i + Z Pp—iClh—j+i-1, JE€{0,...,p—2}.
i=0 i=0
Given the risk-neutral stationary assumption on the process (x), the relations c¢,_;p, for j €
{0,...,p— 1}, converge at an exponential rate with possible oscillations, when h — co. The limits
are :
D
6 = —Zi=l @i
(1) 7
J J
Gy = = opitd @n, jE{0,...,p—2}.
i=0 i=0

Note that U*(1) > 0 because of the stability conditions.

With regard to dj, its equation gives the specification of the long-term yield R(¢,00) as a
function of the steady state ¢;. Indeed, the difference equation dj, can be written (assuming the
identification condition 8 = 0, as we have seen in Exercise N° 02) as:

0 for h=1,
dy = h—1

h—1
1
V*ZCLJ'Jr?TQZC%J’ Vh > 2,
J=1 Jj=1

and, under the stability of the system ¢, we have from the yield-to-maturity formula that:

R(t,00) = hgrfoo R(t,h)
h—1 9 h—1
B ch v o 1 9
= hgrjloo 3 X h < Cl,5 2 ; €1, cav (010’) R

which is positive under the condition [V* + %0261] > 0.

The shape of ¢;, (and thus the yield curve shapes), for h varying, depends on whether the
eigenvalues (A, ..., \p) of ®* are real or complex, single or multiple, larger or smaller than one in
modulus.



Exercise N° 08 [Gaussian AR(p) Factor Dynamics under the S-Forward probability].

The S-forward Laplace transform of x;y;, conditionally to I; = (z;), can be written in the

following way:

()
EZ [exp(uiy1)]
) (5)
= B.S) Ei@ [exp(—7¢ — ... —rg—1 + uzer1)] -
Now, starting from the identity
log[B(t, T)) = Y, p(j, T) +log[B(0, T)], (6)

we have in the risk-neutral world:
log[B(t, T)] = =35 w(i, T+ > iyrj1— 325y w(j, T)? +1og[B(0, T)].  (7)

If we put "=t in (7), we get a relation for the sum of the short-rates:

Sieatiot = 2w g+ 5 Y5 w(i 1) —logB(0, 1), (8)
that we can substitute in (7) to find the following alternative representation for the bond price
process:

Proposition : For every fixed maturity 7', the zero-coupon bond price process B(-,T) = [ B(t,T), 0 <
t < T'], under the risk-neutral probability Q, can be written as :

Bt T) = e exp (= il T) = wli, O - § Shoilwly T2 = w(, 7). (9)

From relation (8), we have that, under the risk-neutral measure Q, the sum of short-term rates in
the above formula can be written as:

S S t
> rier = ) oriei— ) rien
=1 j=1

j=t+1
S t
= w(g, S)n; — Zw(j7t)77j
j=1 J=1
S t
+% > @i 8 =Y w(j,t)?| +log [5(((?,7;‘))]

j=1 j=1



and, consequently, we get:

(S)
B2 [exp(uzis1)]

exp |4 [ S5 . 8)7 = S35y w6 07] = Ty (:S) — w0 ~ log | |

- B(t,5) .
S
EZ lexp | = Y w(i, S)nj —w(t+1,8)mes1 +ulv® + @7 Xi + 0™ neyi]
Jj=t+2
S
= ksER lexp | = Y w(i, Sy || x
Jj=t+2

B [exp (u(v® + 97 X)) + (uo™ = w(t +1,8)mi41 ) |

= kjgexp [u [1/* + " Xy — o w(t + 1, S)} + %u%*ﬂ ;
(10)

now, using (9) we have that

exp [~} |5 @, 9)? = Koy w(i,02] = Shoy (i, 8) - w(i, O] m; — log | 50 |
s = B(1,9)
s
= exp —5 Z W(], 8)2
J=t+1
and that
1 S
ks = ksexp |5 D w(G8)*| =1.
j=t+1

Consequently, we recognize the conditional Laplace transform of the following Gaussian AR(p)
stochastic process:
Tyl = VS + Q1T + oo+ OpTip1—p + 064,
with
vs =v* —oc*w(t+1,9),

and where ;11 ~ ZZN(0,1) under Qg.



Exercise N° 09 [Zero-Coupon Bond Return Process under the S-Forward probability].

We have that:

/ /
= cp_y 1 Xpy1 Hdpy1 —cp_ Xy —dpy

_ / * ~ % 1.2 *2
= g [ Xey1 =@ Xy =0+ — 50174 10

= 4 [U* <£t+1 —w(t+1, 5)61)} +re— %C%,Tftfla*Q
= rmtwlt+1,Tw(t+1,S5)
—qw(t+1,7) —w(t+1,T)é1,
and the first part of the result is proved. Now, if we calculate E9<S) {exp[p(t+ 1, T)]} we have:
E;@(S) exp[p(t+1,T)] = Ei@(s) exp [re +w(t+ 1, Tw(t+1,8) — swt+1,T)? —w(t+1,T)41]
= exp[r+w(t+1,Tw(t+1,S)— %w(t +1,7)?] EP(S) exp[—w(t + 1,T)& 1]
= exp(r+w(t+1,T)w(t+1,5))
and therefore )\;Q(S) (p,1) =log Ei@(s){exp pt+1, T} —r=wlt+1,Tw(t+1,9).
Exercise N° 10 [No-arbitrage restrictions for the short rate and spread].

We have a bivariate Gaussian VAR(1) ATSM given by:

Tpi1 = v+ ®xy +Xer1, ep1 ~N(0,13) (under P)

My 441 = exp[-B— o'z + ey — IUIy] , (SDF)

I = D(z) = (ot vm),

Cy, = —a+ (P+Xy)Ch1=—a+ ' Ch_q

Dy, = —B+Ch_ (v+37) +3C_(EX)Choy + Dy1,
Co=0,Dy =0,

where x; = (r,S;)', with 7, = R(t,t 4 1) the yield with the shortest maturity in our data base (it
is the short rate) and Sy = Ry — 7 the spread between the long rate (the yield with the longest
maturity in our data base) and the short rate.

10



I have to impose no-arbitrage restrictions on both components of the factor (z;) given that they
contains yields at different maturities.

First, I have to impose that R(t,t + 1) = r4: this condition generates the no-arbitrage restriction
R(t,1) = B+ d'xy = B+ aqry + a2Sy = 4. Clearly, 1 = 8+ o’xy = B+ aqre + oSy if and only if
B =0, a; =1 and ag = 0. These conditions are equivalent to C; = —(1,0) and D; = 0.

Second, let us denote by H the longest maturity in our data base. I have to impose that R(t,t+H) =
R; for any t. In this case we have:

—%[CI,H re +Co g St + D) = Ry

S Cipri+Cop (Ry—r) + Dy =—HRy
& [Crg—Coplri +Cog R+ Dy = —HRy
& Cpy=0Cog, Cog=—-H, Dy=0,

that is Cy = —H (1,1)" and Dy = 0.
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