Fixed Income and Credit Risk : solutions for exercise sheet n° 04

Fall Semester 2012

Professor Assistant Program Fulvio Pegoraro Roberto Marfè MSc. Finance

Exercise N° 01 [Exponential-affine ZCB Pricing Formula].

Given that $M_{t,t+1}$ is exponential-affine in ε_{t+1} (i.e. x_{t+1}) and that the conditional Laplace transform of x_{t+1} is exponential-affine in the conditioning variable (x_t) we suggest that the ZCB pricing formula at date t be an exponential-affine function of x_t and then "we check if it works". We proceed in the following way:

a) We suggest $B(t, t + h) = \exp(c'_h X_t + d_h)$ and we (equivalently) rewrite the pricing formula in terms of the payoff $B(t+1, t+h) = \exp(c'_{h-1} X_{t+1} + d_{h-1})$:

$$\begin{split} B(t,t+h) &= \exp(c'_h X_t + d_h) \\ &= E_t [M_{t,t+1} \cdots M_{t+h-1,t+h}] \\ &= E_t [M_{t,t+1} B(t+1,t+h)] \\ &= E_t \left[\exp\left(-\beta - \alpha' X_t + \Gamma_t \varepsilon_{t+1} - \frac{1}{2} \Gamma_t^2\right) \exp(c'_{h-1} X_{t+1} + d_{h-1}) \right] \,, \end{split}$$

b) we do the algebra (calculating the conditional Laplace transform) obtaining:

$$B(t, t + h)$$

$$= \exp(c_{h}'X_{t} + d_{h})$$

$$= \exp\left[-\beta - \alpha'X_{t} - \frac{1}{2}\Gamma_{t}^{2} + d_{h-1}\right] \times E_{t}[\exp\left(\Gamma_{t}\varepsilon_{t+1} + c_{h-1}'X_{t+1}\right)]$$

$$= \exp\left[-\beta - \alpha'X_{t} - \frac{1}{2}\Gamma_{t}^{2} + d_{h-1} + c_{h-1}'(\Phi X_{t} + \tilde{\nu})\right] \times E_{t}[\exp\left(\Gamma_{t} + \sigma c_{1,h-1}\right)\varepsilon_{t+1})]$$

$$= \exp\left[(-\alpha + \Phi'c_{h-1} + c_{1,h-1}\sigma\gamma)'X_{t} + (-\beta + c_{1,h-1}\nu + \frac{1}{2}c_{1,h-1}^{2}\sigma^{2} + \gamma_{o}c_{1,h-1}\sigma + d_{h-1})\right],$$

c) and by identifying the coefficients we find the recursive relations for c_h and d_h characterizing the pricing formula $B(t, t + h) = \exp(c'_h X_t + d_h)$.

Now, the last elements we need to completely determine the pricing formula are the starting conditions for c_h and d_h . We proceed as follows:

given that, by definition of ZCB, we have B(t,t) = 1, then

$$\exp(c'_0 X_t + d_0) = 1 \iff (c'_0 X_t + d_0) = 0 \quad \forall \ X_t \iff c_0 = 0, \ d_0 = 0.$$

We can also equivalently write:

given that, by definition of ZCB, we have $B(t, t+1) = \exp(-r_t)$, then

$$\exp(c_1' X_t + d_1) = \exp(-r_t) \iff (c_1' X_t + d_1) = -r_t \quad \forall X_t \iff c_1 = -\alpha, \ d_1 = -\beta$$

Exercise N° 02 [Identification Issue in latent factor Gaussian ATSMs].

We have the following family of Gaussian AR(p) Factor-Based term structure models:

$$\begin{aligned} x_{t+1} &= \nu + \varphi x_t + \sigma \varepsilon_{t+1}, \ \varepsilon_{t+1} \sim \mathcal{N}(0,1) \ (\text{under } \mathbb{P}) \\ M_{t,t+1} &= \exp\left[-\beta - \alpha x_t + \Gamma_t \varepsilon_{t+1} - \frac{1}{2}\Gamma_t^2\right], \ (\text{SDF}) \\ r_t &= \beta + \alpha x_t, \ \Gamma_t = \Gamma(x_t) = (\gamma_o + \gamma x_t), \\ R(t,h) &= -\frac{c_h}{h} x_t - \frac{d_h}{h}, \\ c_h &= -\alpha + \varphi c_{h-1} + c_{h-1}\sigma\gamma = -\alpha + (\varphi + \sigma\gamma)c_{h-1}, \\ d_h &= -\beta + c_{h-1}(\nu + \gamma_o\sigma) + \frac{1}{2}c_{h-1}^2\sigma^2 + d_{h-1}, \\ c_0 = 0, d_0 = 0. \end{aligned}$$

We have seen that the yield-to-maturity formula R(t, h) is completely determined by the specification of the historical dynamics of x_{t+1} (Gaussian AR(1)) and by the specification of the one-period SDF $M_{t,t+1}$ (exponential-affine in ε_{t+1}). The identification issue, associated to the specification of yield-to-maturity formula, is therefore given by the fact that different (infinitely many) set of parameter values (ν, φ, σ) and ($\beta, \alpha, \gamma_o, \gamma$) can generate the same theoretical R(t, h). This means that, from a given time series of observations $R^o(t, h)$, we cannot detect the unique set of parameters such that the distance between R(t, h) and $R^o(t, h)$ is minimized, given that several different set of parameters determine the same R(t, h).

More formally : for arbitrary real constants μ_1 and μ_2 , if we replace:

a) x_t by $\bar{x}_t = \mu_1 + \mu_2 x_t$ (any Gaussian stochastic process can be represented as an affine transformation of the centered and normalized one),

b.1) γ by $\frac{\gamma}{\mu_2}$,

b.2)
$$\gamma_o$$
 by $\gamma_o - \frac{\mu_1}{\mu_2} \gamma' e$,
b.3) α by $\frac{\alpha}{\mu_2}$
b.4) and β by $\beta - \frac{\mu_1}{\mu_2} \alpha' e$.

we obtained the same SDF $M_{t,t+1}$ dynamics (depending on the factor dynamics) and therefore we generate the same yield R(t,h) (remember that $B(t,h) = E_t[M_{t,t+1} \dots M_{t+h-1,t+h}]$). In other words, for a starting parametric specification of x_t and $M_{t,t+1} = M_{t,t+1}(x_t)$, we have that, after the parametric transformations a), b.1) -b.4), we obtain a new latent factor \bar{x}_t and SDF $\bar{M}_{t,t+1}(\bar{x}_t)$ such that $M_{t,t+1}(x_t) = M_{t,t+1}(\bar{x}_t)$ for any t. Thus, $E_t[M_{t,t+1} \dots M_{t+h-1,t+h}] = E_t[\bar{M}_{t,t+1} \dots \bar{M}_{t+h-1,t+h}]$ for any t and h and the theoretical yields are therefore the same.

If x_t is not directly observed, we can assume for instance, as far as the term structure is concerned, that $\nu = 0$ and $\sigma = 1$, or $\beta = 0$ and $\alpha = 1$. In this way the identification problem is solved. This result is easily generalized to the case of a Gaussian AR(p) process [see Monfort and Pegoraro (2007), Section 2.4].

Exercise N° 03 [Excess Returns of Zero-Coupon Bonds].

Given that $B(t,T) = \exp(c'_{T-t} X_t + d_{T-t})$, we can write:

$$\begin{split} \rho(t+1,\,T) &= \log\left[B(t+1,\,T)\right] - \log\left[B(t,\,T)\right] \\ &= c'_{T-t-1}X_{t+1} + d_{T-t-1} - c'_{T-t}X_t - d_{T-t} \\ &= c'_{T-t-1}\left[X_{t+1} - \Phi X_t - \tilde{\nu}\right] + (\beta + \alpha' X_t) - \sigma c_{1,T-t-1}(\gamma_o + \gamma' X_t) - \frac{1}{2}c_{1,T-t-1}^2 \sigma^2 \\ &= (c_{1,T-t-1}\sigma)\varepsilon_{t+1} + (\beta + \alpha' X_t) - \sigma c_{1,T-t-1}(\gamma_o + \gamma' X_t) - \frac{1}{2}c_{1,T-t-1}^2 \sigma^2 \,. \end{split}$$

Now, we have that, under the absence of arbitrage $r_t = (\beta + \alpha' X_t)$ and, consequently, the result is proved.

Exercise N° 04 [Risk-Neutral Laplace Transform of the Gaussian AR(p) Factor].

The risk-neutral Laplace transform of x_{t+1} , conditionally to $\underline{x_t}$, is given by:

$$E_t^{\mathbb{Q}}[\exp(ux_{t+1})] = E_t \left[\frac{M_{t,t+1}}{E_t(M_{t,t+1})} \exp(ux_{t+1}) \right]$$

= $E_t \left[\exp\left((\gamma_o + \gamma' X_t) \varepsilon_{t+1} - \frac{1}{2} (\gamma_o + \gamma' X_t)^2 + ux_{t+1} \right) \right]$
= $\exp\left[u(\nu + \varphi' X_t) - \frac{1}{2} (\gamma_o + \gamma' X_t)^2 \right]$
 $E_t \left[\exp((\gamma_o + \gamma' X_t + u\sigma)\varepsilon_{t+1}) \right]$
= $\exp\left[u[(\nu + \sigma\gamma_o) + (\varphi + \sigma\gamma)' X_t] + \frac{1}{2}u^2\sigma^2 \right],$

where $\varphi = [\varphi_1, \ldots, \varphi_p]'$.

Exercise N° 05 [Risk-Neutral Zero-Coupon Bond Return Process].

We have that

$$\begin{split} \rho(t+1,\,T) &= \log\left[B(t+1,\,T)\right] - \log\left[B(t,\,T)\right] \\ &= c'_{T-t-1}X_{t+1} + d_{T-t-1} - c'_{T-t}X_t - d_{T-t} \\ &= c'_{T-t-1}X_{t+1} - (-\alpha' + c'_{T-t-1}\Phi^*)X_t + \beta - c_{1,T-t-1}\nu^* - \frac{1}{2}c_{1,T-t-1}^2\sigma^2 \\ &= c'_{T-t-1}\left[X_{t+1} - \Phi^*X_t - \tilde{\nu}^*\right] + r_t - \frac{1}{2}c_{1,T-t-1}^2\sigma^2 \\ &= r_t - \frac{1}{2}\omega(t+1,T)^2 - \omega(t+1,T)\eta_{t+1} \end{split}$$

and the first part of the result is proved. Now, if we calculate $E_t^{\mathbb{Q}} \exp \left[\rho(t+1, T)\right]$ we have:

$$E_t^{\mathbb{Q}} \exp\left[\rho(t+1, T)\right] = E_t^{\mathbb{Q}} \exp\left[r_t - \frac{1}{2}\omega(t+1, T)^2 - \omega(t+1, T)\eta_{t+1}\right]$$

= $\exp[r_t - \frac{1}{2}\omega(t+1, T)^2] E_t^{\mathbb{Q}} \exp[-\omega(t+1, T)\eta_{t+1}] = \exp(r_t)$

and therefore $\lambda_t^{\mathbb{Q}}(\rho, 1) = \log E_t^{\mathbb{Q}} \exp \left[\rho(t+1, T)\right] - r_t = 0.$

Exercise N° 06 [Yield Curve Shapes, Risk-Neutral Stationarity and Long Rates].

The different shapes that the yield curve formula $R(t, t+h) = -\frac{1}{h}[c'_h X_t + d_h]$ is able to reproduce depend crucially on the system of difference equations (c_h, d_h) :

$$\begin{cases} c_h = \Phi^{*'} c_{h-1} - \alpha \\ \\ d_h = -\beta + c_{1,h-1} \nu^* + \frac{1}{2} c_{1,h-1}^2 \sigma^2 + d_{h-1} \end{cases}$$

with initial conditions $c_0 = 0$ and $d_0 = 0$. Let us consider in that exercise the case where x_{t+1} follows a Gaussian AR(1) and AR(2) process respectively.

p = 1 Let us consider that $x_t = r_t$ follows a Gaussian AR(1) process. In this case c_h satisfies the fist-order difference equation:

$$c_h = -1 + (\varphi + \sigma \gamma)c_{h-1},$$

where $\sigma > 0$, γ and $|\varphi| < 1$ are scalar coefficients, and with a general solution, denoted c(h), given by:

$$c(h) = -\left[\frac{1}{1-(\varphi+\sigma\gamma)}\right]\left[1-(\varphi+\sigma\gamma)^{h}\right] = -\left[\frac{1-\varphi^{*h}}{1-\varphi^{*}}\right],$$

which tends, for h increasing to infinity, to the limit:

$$\overline{c} = -\left[\frac{1}{1-\varphi^*}\right] \,,$$

under the condition $|\varphi^*| < 1$, where $\varphi^* = (\varphi + \sigma \gamma)$ is the unique eigenvalue of the (scalar) matrix $\Phi^{*'}$. This means that this stability condition of the difference equation c_h coincide with the stationarity condition of the AR(1) process x_{t+1} under the risk-neutral probability \mathbb{Q} .

Now, observe that this condition implies c(h) < 0 for every h > 0. In addition, if $0 < \varphi + \sigma \gamma < 1$ (respectively, $-1 < \varphi + \sigma \gamma < 0$), the function c(h) converges in decreasing (respectively, oscillating) towards \overline{c} .

With regard to d_h , it easy to verify that :

$$d(h) = -\left[\frac{\nu^*}{1-\varphi^*}\right](h-1) + \left[\frac{\varphi^* - \varphi^{*h}}{1-\varphi^*}\right] \left[\frac{\nu^*}{1-\varphi^*} - \frac{\sigma^2}{(1-\varphi^*)^2}\right] + \frac{\sigma^2}{2(1-\varphi^*)^2} \left[(h-1) + \frac{\varphi^{*2} - \varphi^{*2h}}{1-\varphi^{*2}}\right].$$

Consequently, the yield to maturity formula, for p = 1, is given by :

$$\begin{split} R(t,t+h) &= \frac{1}{h} \left[\frac{1-\varphi^{*h}}{1-\varphi^{*}} \right] r_{t} + \frac{(h-1)}{h} \left[\frac{\nu^{*}}{1-\varphi^{*}} \right] - \frac{1}{h} \left[\frac{\varphi^{*}-\varphi^{*h}}{1-\varphi^{*}} \right] \left[\frac{\nu^{*}}{1-\varphi^{*}} - \frac{\sigma^{2}}{(1-\varphi^{*})^{2}} \right] \\ &- \frac{\sigma^{2}}{2h(1-\varphi^{*})^{2}} \left[(h-1) + \frac{\varphi^{*2}-\varphi^{*2h}}{1-\varphi^{*2}} \right]. \end{split}$$

p = 2 If the factor $x_t = r_t$ is a Gaussian AR(2) process, the recursive equation for c_h is described by a first-order (2×2) system of difference equations of the following type:

$$\begin{bmatrix} c_{1,h} \\ c_{2,h} \end{bmatrix} - \begin{bmatrix} \varphi_1 + \sigma \gamma_1 & 1 \\ \varphi_2 + \sigma \gamma_2 & 0 \end{bmatrix} \begin{bmatrix} c_{1,h-1} \\ c_{2,h-1} \end{bmatrix} = - \begin{bmatrix} 1 \\ 0 \end{bmatrix} ; \qquad (1)$$

substituting the first equation into the second, we find for $c_{1,h+1}$ the following second-order linear difference equation:

$$c_{1,h+1} = -1 + \varphi_1^* c_{1,h} + \varphi_2^* c_{1,h-1} , \qquad (2)$$

where $\varphi_1^* = (\varphi_1 + \sigma \gamma_1)$ and $\varphi_2^* = (\varphi_1 + \sigma \gamma_2)$; under the condition that the two eigenvalues (λ_1, λ_2) of $\Phi^{*'}$ (or the inverse of the roots of $1 - \varphi_1^* L - \varphi_2^* L^2$) are not equal and less than unity in modulus, and regardless of their real or complex nature, the limit of $c_{1,h}$ is given by:

$$\overline{c}_1 = -\frac{1}{(1-\lambda_1)(1-\lambda_2)}$$

these conditions can equivalently be expressed in the following way : $\varphi_1^* + \varphi_2^* < 1$, $\varphi_2^* - \varphi_1^* < 1$ and $|\varphi_2^*| < 1$. These are exactly the stationarity conditions of the Gaussian AR(2) process x_{t+1} under the risk-neutral probability \mathbb{Q} . If we substitute \overline{c}_1 into the second equation of system (1) we find, consequently, the limit of $c_{2,h}$:

$$\overline{c}_2 = -\varphi_2^* \frac{1}{(1-\lambda_1)(1-\lambda_2)}$$

The recursive equation characterizing d_h is given by:

$$d_h = \begin{cases} 0 & \text{for } h = 1\\ \nu^* \sum_{j=1}^{h-1} c_j + \frac{1}{2} \sigma^2 \sum_{j=1}^{h-1} c_j^2, \quad \forall h \ge 2, \end{cases}$$

that is, it is a function of (some parameter and) c_j for $j \in \{1, \ldots, h-1\}$.

Exercise N° 07.

Let us consider again the system of difference equations (c_h, d_h) :

$$\begin{cases} c_h = \Phi^{*'} c_{h-1} - \alpha \\ d_h = -\beta + c_{1,h-1} \nu^* + \frac{1}{2} c_{1,h-1}^2 \sigma^2 + d_{h-1}, \end{cases}$$

with initial conditions $c_0 = 0$ and $d_0 = 0$. Let us consider in that exercise the general case where x_{t+1} follows a Gaussian AR(p) process. In this case, it is well known that the steady state $\overline{\mathbf{C}} = [\overline{c}_1, \ldots, \overline{c}_p]'$ of the system c_h is given, I denoting the $(p \times p)$ identity matrix, by:

$$\overline{\mathbf{C}} = -(I - \Phi^{*'})^{-1}\alpha, \qquad (3)$$

under the (stability) condition that the p eigenvalues $(\lambda_1, \ldots, \lambda_p)$ of $\Phi^{*'}$ are all smaller than unity in modulus, or, equivalently, that the risk-neutral dynamics of (x_t) is stationary, or that the roots of the risk-neutral autoregressive polynomial (of degree p) $\Psi^*(L) = 1 - \varphi_1^*L - \ldots - \varphi_p^*L^p$ have a modulus larger than one (given that these roots are the inverse of the eigenvalues). More precisely, the system of equations c_h can be rewritten as:

$$\begin{cases} c_{1,h} = \varphi_1^* c_{1,h-1} + c_{2,h-1} - \alpha_1 \\ c_{2,h} = \varphi_2^* c_{1,h-1} + c_{3,h-1} - \alpha_2 \\ \vdots \\ c_{p-1,h} = \varphi_{p-1}^* c_{1,h-1} + c_{p,h-1} - \alpha_{p-1} \\ c_{p,h} = \varphi_p^* c_{1,h-1} - \alpha_p , \end{cases}$$

and if we substitute the p^{th} equation in the $(p-1)^{th}$ for $c_{p,h-1}$, and then the $(p-1)^{th}$ equation in the $(p-2)^{th}$ for $c_{p-1,h-1}$, and so on till the first one, we find that $c_{1,h}$ is described by the following p^{th} order linear difference equation :

$$\Psi^*(L)c_{1,h} = -\sum_{i=1}^p \alpha_i \,,$$

where $\Psi^*(L) = 1 - \varphi_1^* L - \ldots - \varphi_p^* L^p$ operates here to h. The remaining equations are given by :

$$c_{p-j,h} = -\sum_{i=0}^{j} \alpha_{p-i} + \sum_{i=0}^{j} \varphi_{p-i}^* c_{1,h-j+i-1}, \quad j \in \{0, \dots, p-2\}.$$

Given the risk-neutral stationary assumption on the process (x_t) , the relations $c_{p-j,h}$, for $j \in \{0, \ldots, p-1\}$, converge at an exponential rate with possible oscillations, when $h \to \infty$. The limits are :

$$\overline{c}_{1} = -\frac{\sum_{i=1}^{p} \alpha_{i}}{\Psi^{*}(1)},$$

$$\overline{c}_{p-j} = -\sum_{i=0}^{j} \alpha_{p-i} + \overline{c}_{1} \sum_{i=0}^{j} \varphi_{p-i}^{*}, \quad j \in \{0, \dots, p-2\}.$$

Note that $\Psi^*(1) > 0$ because of the stability conditions.

With regard to d_h , its equation gives the specification of the long-term yield $R(t, \infty)$ as a function of the steady state \bar{c}_1 . Indeed, the difference equation d_h can be written (assuming the identification condition $\beta = 0$, as we have seen in Exercise N° 02) as:

$$d_{h} = \begin{cases} 0 & \text{for } h = 1, \\ \nu^{*} \sum_{j=1}^{h-1} c_{1,j} + \frac{1}{2} \sigma^{2} \sum_{j=1}^{h-1} c_{1,j}^{2}, \quad \forall h \ge 2, \end{cases}$$
(4)

and, under the stability of the system c_h , we have from the yield-to-maturity formula that:

$$R(t,\infty) = \lim_{h \to +\infty} R(t,h)$$

= $\lim_{h \to +\infty} -\frac{c_h}{h} X_t - \frac{\nu^*}{h} \sum_{j=1}^{h-1} c_{1,j} - \frac{\sigma^2}{2h} \sum_{j=1}^{h-1} c_{1,j}^2 = -\bar{c}_1 \nu^* - \frac{1}{2} (\bar{c}_1 \sigma)^2$

which is positive under the condition $\left[\nu^* + \frac{1}{2}\sigma^2 \overline{c}_1\right] > 0.$

The shape of c_h (and thus the yield curve shapes), for h varying, depends on whether the eigenvalues $(\lambda_1, \ldots, \lambda_p)$ of $\Phi^{*'}$ are real or complex, single or multiple, larger or smaller than one in modulus.

Exercise N° 08 [Gaussian AR(p) Factor Dynamics under the S-Forward probability].

The S-forward Laplace transform of x_{t+1} , conditionally to $I_t = (\underline{x_t})$, can be written in the following way:

$$E_t^{\mathbb{Q}^{(S)}}[\exp(ux_{t+1})] = \frac{1}{B(t,S)} E_t^{\mathbb{Q}}\left[\exp(-r_t - \dots - r_{S-1} + ux_{t+1})\right].$$
(5)

Now, starting from the identity

$$\log[B(t, T)] = \sum_{j=1}^{t} \rho(j, T) + \log[B(0, T)], \qquad (6)$$

we have in the risk-neutral world:

$$\log[B(t,T)] = -\sum_{j=1}^{t} \omega(j,T)\eta_j + \sum_{j=1}^{t} r_{j-1} - \frac{1}{2} \sum_{j=1}^{t} \omega(j,T)^2 + \log[B(0,T)].$$
(7)

If we put T = t in (7), we get a relation for the sum of the short-rates:

$$\sum_{j=1}^{t} r_{j-1} = \sum_{j=1}^{t} \omega(j, t) \eta_j + \frac{1}{2} \sum_{j=1}^{t} \omega(j, t)^2 - \log[B(0, t)], \qquad (8)$$

that we can substitute in (7) to find the following alternative representation for the bond price process:

Proposition : For every fixed maturity T, the zero-coupon bond price process $B(\cdot, T) = [B(t, T), 0 \le t \le T]$, under the risk-neutral probability \mathbb{Q} , can be written as :

$$B(t,T) = \frac{B(0,T)}{B(0,t)} \exp\left(-\sum_{j=1}^{t} [\omega(j,T) - \omega(j,t)] \eta_j - \frac{1}{2} \sum_{j=1}^{t} [\omega(j,T)^2 - \omega(j,t)^2]\right).$$
(9)

From relation (8), we have that, under the risk-neutral measure \mathbb{Q} , the sum of short-term rates in the above formula can be written as:

$$\sum_{j=t+1}^{S} r_{j-1} = \sum_{j=1}^{S} r_{j-1} - \sum_{j=1}^{t} r_{j-1}$$
$$= \sum_{j=1}^{S} \omega(j,S)\eta_j - \sum_{j=1}^{t} \omega(j,t)\eta_j$$
$$+ \frac{1}{2} \left[\sum_{j=1}^{S} \omega(j,S)^2 - \sum_{j=1}^{t} \omega(j,t)^2 \right] + \log \left[\frac{B(0,t)}{B(0,S)} \right]$$

and, consequently, we get:

$$E_{t}^{\mathbb{Q}^{(S)}}[\exp(ux_{t+1})] = \frac{\exp\left[-\frac{1}{2}\left[\sum_{j=1}^{S}\omega(j,S)^{2}-\sum_{j=1}^{t}\omega(j,t)^{2}\right]-\sum_{j=1}^{t}\left[\omega(j,S)-\omega(j,t)\right]\eta_{j}-\log\left[\frac{B(0,t)}{B(0,S)}\right]\right]}{B(t,S)} \times E_{t}^{\mathbb{Q}}\left[\exp\left(-\sum_{j=t+2}^{S}\omega(j,S)\eta_{j}-\omega(t+1,S)\eta_{t+1}+u[\nu^{*}+\varphi^{*'}X_{t}+\sigma^{*}\eta_{t+1}]\right)\right] \\ = k_{t,S}E_{t}^{\mathbb{Q}}\left[\exp\left(-\sum_{j=t+2}^{S}\omega(j,S)\eta_{j}\right)\right] \times E_{t}^{\mathbb{Q}}\left[\exp\left(u(\nu^{*}+\varphi^{*'}X_{t})+(u\sigma^{*}-\omega(t+1,S))\eta_{t+1}\right)\right] \\ = k_{t,S}'\exp\left[u\left[\nu^{*}+\varphi^{*'}X_{t}-\sigma^{*}\omega(t+1,S)\right]+\frac{1}{2}u^{2}\sigma^{*2}\right];$$
(10)

now, using (9) we have that

$$k_{t,S} = \frac{\exp\left[-\frac{1}{2}\left[\sum_{j=1}^{S}\omega(j,S)^2 - \sum_{j=1}^{t}\omega(j,t)^2\right] - \sum_{j=1}^{t}\left[\omega(j,S) - \omega(j,t)\right]\eta_j - \log\left[\frac{B(0,t)}{B(0,S)}\right]\right]}{B(t,S)}$$
$$= \exp\left[-\frac{1}{2}\sum_{j=t+1}^{S}\omega(j,S)^2\right]$$

and that

$$k'_{t,S} = k_{t,S} \exp\left[\frac{1}{2} \sum_{j=t+1}^{S} \omega(j,S)^2\right] = 1.$$

Consequently, we recognize the conditional Laplace transform of the following Gaussian $\mathrm{AR}(p)$ stochastic process:

$$x_{t+1} = \nu_S + \varphi_1^* x_t + \ldots + \varphi_p^* x_{t+1-p} + \sigma^* \xi_{t+1},$$

with

$$\nu_S = \nu^* - \sigma^* \omega(t+1, S) \,,$$

and where $\xi_{t+1} \sim \mathcal{IIN}(0,1)$ under \mathbb{Q}_S .

Exercise N° 09 [Zero-Coupon Bond Return Process under the S-Forward probability].

We have that:

$$\begin{split} \rho(t+1,\,T) &= \log\left[B(t+1,\,T)\right] - \log\left[B(t,\,T)\right] \\ &= c'_{T-t-1}X_{t+1} + d_{T-t-1} - c'_{T-t}X_t - d_{T-t} \\ &= c'_{T-t-1}\left[X_{t+1} - \Phi^*X_t - \tilde{\nu}^*\right] + r_t - \frac{1}{2}c_{1,T-t-1}^2\sigma^{*2} \\ &= c'_{T-t-1}\left[\sigma^*\left(\tilde{\xi}_{t+1} - \omega(t+1,S)e_1\right)\right] + r_t - \frac{1}{2}c_{1,T-t-1}^2\sigma^{*2} \\ &= r_t + \omega(t+1,T)\omega(t+1,S) \\ &- \frac{1}{2}\omega(t+1,T)^2 - \omega(t+1,T)\xi_{t+1}\,, \end{split}$$

and the first part of the result is proved. Now, if we calculate $E_t^{\mathbb{Q}^{(S)}} \{ \exp \left[\rho(t+1, T) \right] \}$ we have:

$$\begin{split} E_t^{\mathbb{Q}^{(S)}} \exp\left[\rho(t+1,T)\right] &= E_t^{\mathbb{Q}^{(S)}} \exp\left[r_t + \omega(t+1,T)\omega(t+1,S) - \frac{1}{2}\omega(t+1,T)^2 - \omega(t+1,T)\xi_{t+1}\right] \\ &= \exp[r_t + \omega(t+1,T)\omega(t+1,S) - \frac{1}{2}\omega(t+1,T)^2] E_t^{\mathbb{Q}^{(S)}} \exp\left[-\omega(t+1,T)\xi_{t+1}\right] \\ &= \exp(r_t + \omega(t+1,T)\omega(t+1,S)) \\ \text{and therefore } \lambda_t^{\mathbb{Q}^{(S)}}(\rho,1) = \log E_t^{\mathbb{Q}^{(S)}} \left\{\exp\left[\rho(t+1,T)\right]\right\} - r_t = \omega(t+1,T)\omega(t+1,S). \end{split}$$

Exercise N° 10 [No-arbitrage restrictions for the short rate and spread].

We have a bivariate Gaussian VAR(1) ATSM given by:

$$\begin{aligned} x_{t+1} &= \nu + \Phi x_t + \Sigma \varepsilon_{t+1}, \ \varepsilon_{t+1} \sim \mathcal{N}(0, I_2) \ (\text{under } \mathbb{P}) \\ M_{t,t+1} &= \exp\left[-\beta - \alpha' x_t + \Gamma'_t \varepsilon_{t+1} - \frac{1}{2} \Gamma'_t \Gamma_t\right], \ (\text{SDF}) \\ \Gamma_t &= \Gamma(x_t) = (\gamma_o + \gamma x_t), \\ R(t,h) &= -\frac{C_h}{h}' x_t - \frac{D_h}{h}, \\ C_h &= -\alpha + (\Phi + \Sigma \gamma)' C_{h-1} = -\alpha + \Phi^{*'} C_{h-1}, \\ D_h &= -\beta + C'_{h-1} (\nu + \Sigma \gamma_o) + \frac{1}{2} C'_{h-1} (\Sigma \Sigma') C_{h-1} + D_{h-1}, \\ C_0 = 0, D_0 = 0, \end{aligned}$$

where $x_t = (r_t, S_t)'$, with $r_t = R(t, t+1)$ the yield with the shortest maturity in our data base (it is the short rate) and $S_t = R_t - r_t$ the spread between the long rate (the yield with the longest maturity in our data base) and the short rate.

I have to impose no-arbitrage restrictions on both components of the factor (x_t) given that they contains yields at different maturities.

First, I have to impose that $R(t, t+1) = r_t$: this condition generates the no-arbitrage restriction $R(t, 1) = \beta + \alpha' x_t = \beta + \alpha_1 r_t + \alpha_2 S_t = r_t$. Clearly, $r_t = \beta + \alpha' x_t = \beta + \alpha_1 r_t + \alpha_2 S_t$ if and only if $\beta = 0, \alpha_1 = 1$ and $\alpha_2 = 0$. These conditions are equivalent to $C_1 = -(1, 0)$ and $D_1 = 0$. Second, let us denote by H the longest maturity in our data base. I have to impose that R(t, t+H) =

 R_t for any t. In this case we have:

$$\begin{aligned} &-\frac{1}{H} [C_{1,H} \, r_t + C_{2,H} \, S_t + D_H] = R_t \\ &\Leftrightarrow C_{1,H} \, r_t + C_{2,H} \, (R_t - r_t) + D_H = -HR_t \\ &\Leftrightarrow [C_{1,H} - C_{2,H}] \, r_t + C_{2,H} \, R_t + D_H = -HR_t \\ &\Leftrightarrow C_{1,H} = C_{2,H} \, , \ C_{2,H} = -H \, , \ D_H = 0 \, , \end{aligned}$$

that is $C_H = -H(1, 1)'$ and $D_H = 0$.