Fixed Income and Credit Risk

Lecture 4

ProfessorAssistantProgramFulvio PegoraroRoberto MarfèMSc. Finance

Fall Semester 2012

Mnil

UNIL | Université de Lausanne

Fixed Income and Credit Risk Lecture 4 - Part I

Discrete-Time Univariate Gaussian

AR(*p***) Term Structure Models**

Outline of Lecture 4 - Part I

- 4.1 Univariate Gaussian AR(1) Factor-Based Term Structure Models
 - 4.1.1 Historical Dynamics
 - 4.1.2 The Stochastic Discount Factor
 - 4.1.3 The Risk Premium
 - 4.1.4 The Affine Term Structure of Interest Rates
 - 4.1.5 Excess Returns of Zero-Coupon Bonds
 - 4.1.6 Risk-Neutral Dynamics

4.1.7 The Gaussian Short-Rate Model

- 4.1.8 The *S*-Forward Dynamics
- 4.2 Univariate Gaussian AR(p) Factor-Based Term Structure Models
 - 4.2.1 Historical Dynamics
 - 4.2.2 The Stochastic Discount Factor
 - 4.2.3 The Risk Premium
 - 4.2.4 The Affine Term Structure of Interest Rates
 - 4.2.5 Excess Returns of Zero-Coupon Bonds

4.2.6 Risk-Neutral Dynamics

4.2.7 The Gaussian AR(p) Short-Rate Model

- 4.2.8 The S-Forward Dynamics
- 4.2.9 Yield Curve Shapes

4.1 Univariate Gaussian AR(1) Factor-Based Term Structure Models

4.1.1 Historical Dynamics

- \Box We consider an economy, in a **dynamic discrete-time setting**, between dates 0 and *T*.
- The new information in the economy at date t is denoted by x_t and the overall information at date t is $\underline{x}_t = (x_t, x_{t-1}, ..., x_0)$. It is the (common) information **judged relevant** by each investor to price assets.
- $\Box x_t$ is called a **factor or a state vector**, and it may be observable, partially observable or unobservable by the econometrician. The size of x_t is K.

 $\Box x_t =$ observable

 \rightarrow interest rates of different maturities, inflation rate, gross domestic product, \ldots

$\Box x_t =$ non observable

 \rightarrow level, slope and curvature factors, market regimes (using regime-switching models), stochastic volatility, jumps (market crashes), ...

$\Box x_t = partially observable$

 $\rightarrow x_t = (x_{1,t}, x_{2,t})'$ where $x_{1,t}$ is observable and $x_{2,t}$ is not.

□ The **historical dynamics** of x_t is defined by the joint distribution of \underline{x}_T , denoted by \mathbb{P} , or by the conditional probability density function (p.d.f.):

 $f_t(x_{t+1}|\underline{x}_t),$

 \Box or by the **conditional Laplace transform** (L.T.):

$$\varphi_t(u|\underline{x}_t) = \varphi_t(u) = E[\exp(u'x_{t+1})|\underline{x}_t] = E_t[\exp(u'x_{t+1})],$$

which is assumed to be defined in an open convex set of \mathbb{R}^{K} (containing zero).

□ We also introduce the **conditional Log-Laplace transform**:

 $\psi_t(u|\underline{x}_t) = \psi_t(u) = \text{Log}[\varphi_t(u|\underline{x}_t)].$

□ Let us assume that K = 1 and that the (non observable) factor x_{t+1} is a Gaussian

AR(1) process of the following type:

$$x_{t+1} = \nu + \varphi x_t + \sigma \varepsilon_{t+1},$$

where ε_{t+1} is a Gaussian white noise with $\mathcal{N}(0,1)$ distribution.

$$\Box E_t[x_{t+1}] = \nu + \varphi x_t \text{ and } V_t[x_{t+1}] = \sigma^2, \Rightarrow x_{t+1} \mid x_t \sim N(\nu + \varphi x_t, \sigma^2)$$

and
$$x_{t+k|t}^e := E_t[x_{t+k}] = (1 + \varphi + \ldots + \varphi^{k-1})\nu + \varphi^k x_t$$
 (under \mathbb{P}).

 \Box Under stationarity (i.e., $|\varphi| < 1$), we have $E[x_t] = \frac{\nu}{1 - \varphi}$ and $V[x_t] = \frac{\sigma^2}{1 - \varphi^2}$,

$$\Rightarrow x_t \sim N\left(\frac{\nu}{1-\varphi}, \frac{\sigma^2}{1-\varphi^2}\right), \text{ with } \lim_{k \to +\infty} E_t[x_{t+k}] = E[x_t] \text{ (under } \mathbb{P}).$$

 $\Box~$ Let us remember that the Laplace transform of a scalar Gaussian random variable $Y \sim N(\mu, \omega^2)~{\rm is:}~$

$$\varphi(u) = E[\exp(uY)] = \exp\left(u\mu + \frac{1}{2}u^2\omega^2\right).$$

$$\Box$$
 This means that:

$$\varphi_t(u|\underline{x}_t) = \varphi_t(u) = \exp\left[u(\nu + \varphi x_t) + \frac{1}{2}u^2\sigma^2\right],$$

 \Box and

$$E[\exp(ux_t)] = \exp\left[u\left(\frac{\nu}{1-\varphi}\right) + \frac{1}{2}u^2\frac{\sigma^2}{1-\varphi^2}\right].$$

4.1.2 The Stochastic Discount Factor

- \Box We price assets (ZCBs in our case!) following the no-arbitrage principle.
- □ We are in a incomplete market setting and therefore, under AAO, we have an infinitely many positive SDFs.
- □ The development of the zero-coupon bond (no arbitrage) pricing model is characterized:
 - after the historical distribution assumption (presented above),
 - by the parametric specification of a positive stochastic discount factor (SDF) $M_{t,t+1}$, for the period (t,t+1).

 \Box The price y(t) at t of a financial asset (basic asset, derivative, ...) paying y(T) at T is:

$$y(t) = E\left[M_{t,t+1} \cdot \ldots \cdot M_{T-1,T} y(T) \mid \underline{x}_t\right] = E_t\left[M_{t,T} y(T)\right].$$

□ We choose a SDF which is exponential-affine in the state variable x_{t+1} , that is (equivalently), in its noise ε_{t+1} :

$$M_{t,t+1} = \exp\left[-\beta - \alpha x_t + \Gamma_t \varepsilon_{t+1} - \frac{1}{2} \Gamma_t^2\right] :$$

- the coefficients α and β are path independent (constant!);

 $-\Gamma_t = \Gamma(x_t) = (\gamma_o + \gamma x_t)$ is a stochastic risk correction coefficient, also called

Market Price of Factor Risk [see following sections].

□ Now, the absence of arbitrage restriction on the ZCB with unitary residual maturity requires:

$$E_t(M_{t,t+1}) = \exp(-r_t),$$

where r_t is the (predetermined) short-term interest rate between t and t + 1.

 \Box This condition implies the relation $r_t = \beta + \alpha x_t$.

□ This means that, under the absence of arbitrage opportunities, the SDF can be written as:

$$M_{t,t+1} = \exp\left[-r_t + \Gamma_t \varepsilon_{t+1} - \frac{1}{2} \Gamma_t^2\right] = \exp(-r_t) \frac{d\mathbb{Q}_{t,t+1}}{d\mathbb{P}_{t,t+1}}$$

4.1.3 The Risk Premium

□ In order to give an interpretation of the risk-correction coefficient Γ_t , we consider the following definition of risk premium [see also Dai, Singleton and Yang (2007, RFS)]:

Definition 1 : If we denote by P_t the price at time t of a given asset, its risk premium between t and t + 1 is:

$$\lambda_t = \log E_t \left(\frac{P_{t+1}}{P_t} \right) - r_t = \log E_t \exp(y_{t+1}) - r_t,$$

where $y_{t+1} = \log(P_{t+1}/P_t)$ denotes the one-period geometric return of the asset.

- \Box We can interpret λ_t as the excess growth rate of the expected price with respect to the present price.
- □ Now, starting from this definition of the risk premium we obtain interpretations of the function Γ_t , appearing in the SDF, by means of the following example.
- **Example :** If we consider an asset providing the payoff $exp(-bx_{t+1})$ at t+1, its price in t is given by:

$$P_t = E_t \left[M_{t,t+1} P_{t+1} \right] = E_t \left[\exp \left(-r_t - \frac{1}{2} \Gamma_t^2 + (\Gamma_t - b\sigma) \varepsilon_{t+1} - b(\nu + \varphi x_t) \right) \right]$$

=
$$\exp \left[-r_t - b(\nu + \varphi x_t) - b\sigma \Gamma_t + \frac{1}{2} (b\sigma)^2 \right],$$

 \Box and

$$E_t P_{t+1} = E_t [\exp(-bx_{t+1})] = \exp\left[-b(\nu + \varphi x_t)\right] E_t \{\exp\left[-b\sigma\varepsilon_{t+1}\right]\}$$
$$= \exp\left[-b(\nu + \varphi x_t) + \frac{1}{2}(b\sigma)^2\right].$$

 \Box Finally, the risk premium is:

$$\lambda_t = b \, \sigma \, \Gamma_t \, .$$

Therefore, *b*, Γ_t and *σ* can be seen respectively as a risk sensitivity of the asset, a risk price and a risk measure.

4.1.4 The Affine Term Structure of Interest Rates

□ With the specification of the SDF, we determine the price of a zero-coupon bond in the following way :

$$B(t,t+h) = E_t \left[M_{t,t+1} \cdot \ldots \cdot M_{t+h-1,t+h} \right],$$

where B(t, t + h) denotes the price at time t for a ZCB with residual maturity h.

Proposition 1 : The price at date t of the zero-coupon bond with residual maturity h is:

$$B(t,t+h) = \exp(c_h x_t + d_h), \ h \ge 1,$$

 \Box where c_h and d_h satisfies the recursive equations:

$$\begin{cases} c_h = -\alpha + \varphi^* c_{h-1}, \\ d_h = -\beta + c_{h-1} \nu^* + \frac{1}{2} c_{h-1}^2 \sigma^2 + d_{h-1}, \end{cases}$$

with $\varphi^* = (\varphi + \sigma \gamma)$, $\nu^* = (\nu + \gamma_o \sigma)$ [keep in mind these parameters].

 \Box The initial conditions of the recursive (difference) equations are:

- at h = 0 we have B(t, t) = 1, implying the conditions $c_0 = 0$ and $d_0 = 0$.

- or, at h = 1 we have $B(t, t + 1) = \exp(-r_t)$, implying the conditions $c_1 = -\alpha$ and $d_1 = -\beta$.

- □ **Proof of Proposition 1** : given that $M_{t,t+1}$ is exponential-affine in ε_{t+1} (i.e. x_{t+1}) and that the conditional Laplace transform of x_{t+1} is exponential-affine in the conditioning variable (x_t) we suggest that the ZCB pricing formula at date t be an exponential-affine function of x_t and then "we check if it works".
- $\Box \text{ We proceed in the following way: } a) \text{ we suggest } B(t, t+h) = \exp(c_h x_t + d_h) \text{ and we}$ (equivalently) rewrite the pricing formula in terms of the payoff B(t+1, t+h) = $\exp(c_{h-1} x_{t+1} + d_{h-1}):$ $B(t, t+h) = \exp(c_h x_t + d_h)$ $= E_t[M_{t,t+1} \cdots M_{t+H-1,t+H}]$ $= E_t[M_{t,t+1}B(t+1, t+h)]$ $= E_t[M_{t,t+1}B(t+1, t+h)]$ $= E_t\left[\exp\left(-\beta \alpha x_t + \Gamma_t \varepsilon_{t+1} \frac{1}{2}\Gamma_t^2\right)\exp(c_{h-1} x_{t+1} + d_{h-1})\right],$ 19

□ b) we do the algebra (calculating the conditional Laplace transform) obtaining: B(t, t + h)

$$= \exp(c_{h} x_{t} + d_{h})$$

$$= \exp\left[-\beta - \alpha x_{t} - \frac{1}{2}\Gamma_{t}^{2} + d_{h-1}\right] \times E_{t}\left[\exp\left(\Gamma_{t}\varepsilon_{t+1} + c_{h-1}x_{t+1}\right)\right]$$

$$= \exp\left[-\beta - \alpha x_{t} - \frac{1}{2}\Gamma_{t}^{2} + d_{h-1} + c'_{h-1}(\varphi x_{t} + \nu)\right] \times E_{t}\left[\exp\left(\Gamma_{t} + \sigma c_{h-1}\right)\varepsilon_{t+1}\right)\right]$$

$$= \exp\left[(-\alpha + \varphi c_{h-1} + c_{h-1}\sigma\gamma)x_{t} + (-\beta + c_{h-1}\nu + \frac{1}{2}c_{h-1}^{2}\sigma^{2} + \gamma_{o}c_{h-1}\sigma + d_{h-1})\right],$$

 \Box c) and by identifying the coefficients we find the recursive relation presented in Proposition 1.

□ The ZCB price at date t is an exponential-affine function of the factor (x_t) at the date $t \rightarrow$ it is function ONLY of the information at time t.

□ **Corollary 1** : The yields to maturity (continuously compounded spot rates) associated to the ZCB pricing formula are :

$$R(t,t+h) = -\frac{1}{h}\log B(t,t+h)$$
$$= -\frac{c_h}{h}x_t - \frac{d_h}{h}, \quad h \ge 1,$$

and they are **affine functions** of the factor x_t .

□ For a given *t* and with *h* varying, R(t, t+h) is the so-called **affine term structure** of interest rates.

□ For that reason the model is called **Affine Term Structure Model (ATSM)**.

Given that the factor x_t is described by a discrete-time Gaussian stochastic process (the AR(1) process), then we talk about **Gaussian Discrete-Time ATSM**.

 \Box x_t is a scalar process : Univariate Gaussian ATSM.

4.1.5 Excess Returns of Zero-Coupon Bonds

 \Box We have the following specification for the zero-coupon bond return process.

□ **Proposition 2** : Under the absence of arbitrage opportunity, and for a fixed maturity *T*, the one-period geometric zero-coupon bond return process $\rho = [\rho(t,T), 0 \le t \le T]$, where $\rho(t+1,T) = \log [B(t+1,T)] - \log [B(t,T)]$, is given by:

$$\rho(t+1, T) = r_t - \frac{1}{2}\omega(t+1, T)^2 + \omega(t+1, T)\Gamma_t - \omega(t+1, T)\varepsilon_{t+1},$$

where $\omega(t+1, T) = -(\sigma c_{T-t-1})$ [Proof : exercise].

 \Box This means that the process ρ is such that:

$$\rho(t+1,T) | \underline{x}_t \sim N \left[\mu(t+1,T), \omega(t+1,T)^2 \right]$$

where $\mu(t+1,T) = r_t - \frac{1}{2}\omega(t+1,T)^2 + \omega(t+1,T)\Gamma_t$,
and $\omega(t+1,T)^2 = (\sigma c_{T-t-1})^2$.

 \Box The associated risk premium between t and t+1, denoted by $\lambda_t(T)$, is:

$$\lambda_t(T) = \log E_t \exp[\rho(t+1, T)] - r_t = \omega(t+1, T) \Gamma_t.$$

 \Box $\Gamma_t = (\gamma_o + \gamma x_t)$ plays (for any *T*) the role of a risk premium per unit of "risk" $\omega(t+1, T)$. \Box In particular, for a fixed $\gamma \neq 0$, the variability of $\lambda_t(T)$ is driven by x_t .

□ If we assume $\gamma = 0$ (i. e., $\Gamma_t = \gamma_o$), the risk correction coefficient and the risk premium of the zero-coupon bond become constants.

□ Also note that, if T = t + 2 and $x_t = r_t$, we have $\omega(t+1, T) = \sigma$ and we get the result of the example presented in Section 4.1.3 for b = 1.

□ We will see during the next Lecture that this property of the excess bond return process gives the opportunity to easily estimate the model, and in particular (γ_o, γ) .

4.1.6 Risk-Neutral Dynamics

- □ In the previous sections we have presented the Gaussian AR(1) Factor-Based Term Structure Model under the historical probability \mathbb{P} .
- \Box Under the absence of arbitrage opportunity, there exist a probability $\mathbb{Q} \sim \mathbb{P}$ under which asset prices, evaluated with respect to some numeraire N_t , are martingales:

$$\frac{y(t)}{N_t} = E_t^{\mathbb{Q}} \left[\frac{y(t+1)}{N_{t+1}} \right]$$

 \square \mathbb{Q} is be the probability (equivalent to \mathbb{P}) defined by the sequence of conditional densities:

$$\frac{d\mathbb{Q}_{t,t+1}}{d\mathbb{P}_{t,t+1}} = \frac{N_{t+1}M_{t,t+1}}{N_t} > 0, \quad E_t^{\mathbb{P}}\left[\frac{d\mathbb{Q}_{t,t+1}}{d\mathbb{P}_{t,t+1}}\right] = 1, t \in \{0, \dots, T-1\}.$$
26

- □ The most used choices of numeraire are the money-market account (we are going to use) and the ZCB choice (presented in one of the following sections).
- □ If we consider as numeraire the money-market account $N_t = \exp(r_0 + ... + r_{t-1}) = A_{0,t}$, where $(A_{0,t})^{-1} = E_0(M_{0,1}) \cdots E_{t-1}(M_{t-1,t})$, the associated equivalent probability \mathbb{Q} has a one-period conditional density, with respect to \mathbb{P} , given by :

$$\frac{d\mathbb{Q}_{t,t+1}}{d\mathbb{P}_{t,t+1}} = \frac{A_{0,t+1}M_{t,t+1}}{A_{0,t}} = \frac{M_{t,t+1}}{E_t(M_{t,t+1})} = e^{r_t}M_{t,t+1}.$$

and it is called risk-neutral probability measure.

 \Box This means that the pricing formula $y(t) = E_t[M_{t,t+1}y(t+1)]$ can be written:

$$y(t) = E_t \left[\frac{M_{t,t+1}}{E_t[M_{t,t+1}]} E_t[M_{t,t+1}] y(t+1) \right]$$

= $E_t^{\mathbb{Q}} [\exp(-r_t) y(t+1)].$

 \Box In a general (T-t)-period horizon, the conditional (to $\underline{x_t}$) density of the risk-

neutral probability \mathbb{Q} with respect to the historical probability \mathbb{P} is given by:

$$\frac{d\mathbb{Q}_{t,T}}{d\mathbb{P}_{t,T}} = \frac{M_{t,t+1} \cdot \ldots \cdot M_{T-1,T}}{E_t(M_{t,t+1}) \cdot \ldots \cdot E_{T-1}(M_{T-1,T})}$$
$$= \exp(r_t + \ldots + r_{T-1}) M_{t,T},$$

 \Box This means that, for any payoff y(T) at T, we have :

$$y(t) = E_t^{\mathbb{Q}}[\exp(-r_t - \ldots - r_{T-1})y(T)],$$

and $y(t)/A_{0,t}$ is a Q-martingale.

□ The one-period transition from the historical world to the risk-neutral one is given, in our model, by the conditional density function :

$$\frac{M_{t,t+1}}{E_t(M_{t,t+1})} = \exp\left[\Gamma_t \varepsilon_{t+1} - \frac{1}{2} \Gamma_t^2\right] \,.$$

 \Box Moreover, for any asset, the price P_t at t is equal to $\exp(-r_t)E_t^{\mathbb{Q}}(P_{t+1})$ and, therefore, the risk premium λ_t presented in Definition 1 is equal to:

$$\lambda_t = \log E_t(P_{t+1}) - \log E_t^{\mathbb{Q}}(P_{t+1}),$$

 \Box The risk-neutral Laplace transform of x_{t+1} , conditionally to $\underline{x_t}$, is given by:

$$E_t^{\mathbb{Q}}[\exp(ux_{t+1})] = E_t \left[\frac{M_{t,t+1}}{E_t(M_{t,t+1})} \exp(ux_{t+1}) \right]$$

= $E_t \left[\exp\left((\gamma_o + \gamma x_t) \varepsilon_{t+1} - \frac{1}{2} (\gamma_o + \gamma x_t)^2 + ux_{t+1}\right) \right]$
= $\exp\left[u(\nu + \varphi x_t) - \frac{1}{2} (\gamma_o + \gamma x_t)^2 \right] \times E_t \left[\exp(\gamma_o + \gamma x_t + u\sigma) \varepsilon_{t+1} \right]$
= $\exp\left[u((\nu + \sigma \gamma_o) + (\varphi + \sigma \gamma) x_t \right] + \frac{1}{2} u^2 \sigma^2 \right]$
= $\exp\left[u(\nu^* + \varphi^* x_t) + \frac{1}{2} u^2 \sigma^2 \right],$

□ **Proposition 3 :** Under the risk-neutral probability \mathbb{Q} , x_{t+1} is an AR(1) process of the following type:

$$x_{t+1} = \nu^* + \varphi^* x_t + \sigma^* \eta_{t+1},$$

 \Box with

$$\nu^* = (\nu + \sigma \gamma_o), \ \varphi^* = (\varphi + \sigma \gamma), \ \sigma^* = \sigma.$$

and where $\eta_{t+1} \stackrel{\mathbb{Q}}{\sim} \mathcal{IIN}(0,1)$. Note that $\varepsilon_{t+1} = \eta_{t+1} + \Gamma_t$.

 \Box If $\Gamma_t = \gamma_o$ (constant market price of risk), only the constant term changes.

If $\Gamma_t = 0$, then (x_t) has the same distribution under \mathbb{P} and \mathbb{Q} .

 \Box Indeed, if $\Gamma_t = 0$ we have $M_{t,t+1} = \exp(-r_t)$ and any payoff is discounted under

 \mathbb{P} by the risk-free rate:

$$B(t, t+h) = E_t[\exp(-r_t - ... - r_{t+h-1})], \text{ with } r_t = \beta + \alpha x_t$$

□ Meaning → assuming $M_{t,t+1} = \exp(-r_t)$ implies that we do not consider the factor (x_t) as a source of risk, additional to (different from) (r_t) , affecting the ZCB price process.

 \Box Indeed, in that case we have $\lambda_t(T) = \log E_t \exp[\rho(t+1, T)] - r_t = 0.$

 \Box **Proposition 4 :** In the risk-neutral framework, for a fixed maturity T, the oneperiod geometric zero-coupon bond return process satisfies the relation:

$$\rho(t+1, T) = r_t - \frac{1}{2}\omega(t+1, T)^2 - \omega(t+1, T) \eta_{t+1},$$

 \Box with a risk premium equal to :

$$\lambda_t^{\mathbb{Q}}(T) = \log E_t^{\mathbb{Q}} \exp \left[\rho(t+1, T)\right] - r_t = 0.$$

4.1.7 The Gaussian short-rate model

□ In what we have presented above, the factor x_t was latent. In the term structure literature several models are specified assuming $x_t = r_t$.

□ The shape and the dynamics of the (ENTIRE!) yield curve is driven (ONLY!) by the short-rate process.

□ It is convenient to have observable factors: we can specify the historical dynamics of the factor starting from the observed stylized facts (autocorrelation, marginal moments, mean-reversion, stationarity, ...) on the short-rate. □ We assume that the factor $x_{t+1} = r_{t+1}$ is a Gaussian AR(1) process of the following type:

$$r_{t+1} = \nu + \varphi r_t + \sigma \varepsilon_{t+1},$$

 \square we have the same SDF, but now the AAO condition $E_t(M_{t,t+1}) = \exp(-r_t)$ implies $\beta = 0$ and $\alpha = 1$. We have to guarantee that the theoretical formula R(t,h) generates, when h = 1, exactly the short rate process we have assumed under \mathbb{P} .

 \Box Clearly, under $\mathbb Q$ we have:

$$r_{t+1} = \nu^* + \varphi^* r_t + \sigma \eta_{t+1},$$

 \Box It is the discrete-time equivalent of the continuous-time Vasicek (1977) model.

□ An interesting interpretation of Γ_t stands out when we write R(t,h) for h = 2. It is easy to verify that:

$$R(t,t+2) = \frac{1}{2} \left[r_t + E_t(r_{t+1}) + \sigma \Gamma_t - \frac{1}{2} \sigma^2 \right] ,$$

□ The term $\frac{1}{2} [r_t + E_t(r_{t+1})]$ is the average sequence of future short rates (\rightarrow Expectation Hypothesis Theory!), while ($\sigma^2/2$) is a Jensen inequality term ($E[\exp(X)]$ > exp[E(X)]).

□ The term $\frac{1}{2}\sigma\Gamma_t$ is the non-zero time-varying Term Premia: if $\Gamma_t = \gamma_o$ then TP is constant over time and depend only on the residual maturity (EH). If $\Gamma_t = 0$, then TP = 0 (PEH).
4.1.8 The *S*-Forward Dynamics

 \Box In many financial applications, a convenient numeraire is the zero-coupon bond whose maturity S is the same as the derivative product we would like to price.

□ More precisely, the equivalent martingale measure is determined in this case, for every date $t \in [0, S]$, by the numeraire:

$$N_t = \frac{B(t,S)}{B(0,S)},$$

and it is referred to as S-forward probability and denoted by $\mathbb{Q}^{(S)}$.

 \Box The one-period conditional (to \underline{x}_t) density of the *S*-forward probability $\mathbb{Q}^{(S)}$, with respect to the historical probability \mathbb{P} , is given by:

$$\frac{d\mathbb{Q}_{t,t+1}^{(S)}}{d\mathbb{P}_{t,t+1}} = \frac{M_{t,t+1}B(t+1,S)}{B(t,S)},$$

 \Box while, the one-period conditional (again, to $\underline{x_t}$) density of the *S*-forward probability $\mathbb{Q}^{(S)}$ with respect to the risk-neutral probability \mathbb{Q} , is given by:

$$\frac{d\mathbb{Q}_{t,t+1}^{(S)}}{d\mathbb{Q}_{t,t+1}} = \frac{d\mathbb{Q}_{t,t+1}^{(S)}}{d\mathbb{P}_{t,t+1}} \frac{d\mathbb{P}_{t,t+1}}{d\mathbb{Q}_{t,t+1}} = E_t(M_{t,t+1}) \frac{B(t+1,S)}{B(t,S)} = \exp(-r_t) \frac{B(t+1,S)}{B(t,S)}.$$

□ Therefore, in a (T - t)-period horizon (where $T \leq S$), the *S*-forward probability $\mathbb{Q}^{(S)}$ has a (conditional to \underline{x}_t) joint density with respect to the risk-neutral probability \mathbb{Q} given by:

$$\frac{d\mathbb{Q}_{t,T}^{(S)}}{d\mathbb{Q}_{t,T}} = \prod_{\tau=t}^{T-1} \exp(-r_{\tau}) \frac{B(\tau+1,S)}{B(\tau,S)} = \frac{B(T,S)}{B(t,S)} \exp(-r_{t} - \ldots - r_{T-1}),$$

□ and the pricing formula of y(T), for S = T, takes the following useful representation:

$$y(t) = E_t^{\mathbb{Q}} \left[\exp(-r_t - \dots - r_{T-1}) y(T) \right] \\ = B(t, T) E_t^{\mathbb{Q}^{(T)}} \left[y(T) \right],$$

in which the problem of derivative pricing reduces to calculating an expectation of the payoff y(T).

□ The S-forward dynamics of x_{t+1} has an AR(1) representation of the following type:

$$x_{t+1} = \nu_S + \varphi^* x_t + \sigma^* \xi_{t+1},$$

 \Box with

$$\nu_S = \nu^* - \sigma^* \omega(t+1,S) ,$$

 \square and where $\xi_{t+1} \sim \mathcal{IIN}(0,1)$ under $\mathbb{Q}^{(S)}$ [Proof : exercise]. Observe that $\varepsilon_{t+1} =$

 $\xi_{t+1} - \omega(t+1,S) + \Gamma_t.$

 $\hfill\square$ In the S -forward framework, the one-period geometric zero-coupon bond return

process is described by the relation:

$$\rho(t+1, T) = -\omega(t+1, T) \xi_{t+1} + r_t - \frac{1}{2}\omega(t+1, T)^2 + \omega(t+1, T)\omega(t+1, S),$$

 \Box with a one-period risk premium given by :

$$\lambda_t^{\mathbb{Q}^{(S)}}(T) = \log E_t^{\mathbb{Q}^{(S)}} \exp \left[\rho(t+1, T)\right] - r_t = \omega(t+1, T)\omega(t+1, S),$$

[Proof : exercise].

□ Consequently, under the *T*-forward probability, the one-period risk premium per unit of $\omega(t+1, T)$ is given by the $\omega(t+1, T)$ itself.

4.2 Univariate Gaussian AR(p) Factor-Based Term Structure Models

4.2.1 Historical Dynamics

□ We assume that the (scalar) exogenous factor x_{t+1} characterizing the specification of the term structure is an AR(p) process of the following type:

$$x_{t+1} = \nu + \varphi_1 x_t + \ldots + \varphi_p x_{t+1-p} + \sigma \varepsilon_{t+1}$$
$$= \nu + \varphi' X_t + \sigma \varepsilon_{t+1},$$

 \Box where ε_{t+1} is a gaussian white noise with $\mathcal{N}(0,1)$ distribution.

 $\square \text{ We have: } \varphi = [\varphi_1, \dots, \varphi_p]', X_t = [x_t, \dots, x_{t+1-p}]', \text{ and where } \sigma > 0, \nu \text{ and } \varphi_i, \text{ for}$ $i \in \{1, \dots, p\}, \text{ are scalar coefficients.}$

$$\square E_t[x_{t+1}] = \nu + \varphi' X_t \text{ and } V_t[x_{t+1}] = \sigma^2 \Rightarrow x_{t+1} \mid x_t \sim N(\nu + \varphi' X_t, \sigma^2) \text{ (under } \mathbb{P}).$$

 $\Box \text{ Under stationarity (i.e. the roots of the equation } 1 - \sum_{j=1}^{p} \varphi_j z^j = 0 \text{ all lie outside}$ the unit circle), we have $E[x_t] = \frac{\nu}{1 - \sum_{j=1}^{p} \varphi_j} = \mu_x$ and $V[x_t] = \sigma_x^2$ [see Hamilton $1 - \sum_{j=1}^{p} \varphi_j$

(1994), Chapter 3],

$$\Rightarrow x_t \sim N(\mu_x, \sigma_x^2)$$
 (under \mathbb{P}).

□ Forecasts can be recursively calculated in the following way:

$$x_{t+k|t}^{e} := E_t[x_{t+k}] = \nu + \varphi_1 E_t[x_{t+k-1}] + \varphi_2 E_t[x_{t+k-2}] + \ldots + \varphi_p E_t[x_{t+k-p}],$$

starting from $E_t[x_{t+1}] = \nu + \varphi_1 x_t + \varphi_2 x_{t-1} + \ldots + \varphi_p x_{t-p+1}$.

 \Box The conditional Laplace transform is given by:

$$\varphi_t(u|\underline{x}_t) = \varphi_t(u) = \exp\left[u(\nu + \varphi'X_t) + \frac{1}{2}u^2\sigma^2\right],$$

 $\hfill\square$ and the marginal one is:

$$E[\exp(ux_t)] = \exp\left[u\,\mu_x + \frac{1}{2}\,u^2\,\sigma_x^2\right]\,.$$

 \Box The model can also be represented in the following multivariate AR(1) form :

$$X_{t+1} = \tilde{\nu} + \Phi X_t + \sigma \tilde{\varepsilon}_{t+1},$$

 \square where $\tilde{\nu} = [\nu, 0, ..., 0]'$ and $\tilde{\varepsilon}_{t+1} = [\varepsilon_{t+1}, 0, ..., 0]'$ are *p*-dimensional vectors,

 \Box and where

$$\Phi = \begin{bmatrix} \varphi_1 & \dots & \varphi_{p-1} & \varphi_p \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & & \ddots & \vdots & \vdots \\ 0 & \dots & \dots & 1 & 0 \end{bmatrix}$$

is a $(p \times p)$ -matrix.

4.2.2 Stochastic Discount Factor

 \Box We specify the following SDF:

$$M_{t,t+1} = \exp\left[-\beta - \alpha' X_t + \Gamma_t \varepsilon_{t+1} - \frac{1}{2} \Gamma_t^2\right],$$

 \Box where the coefficients $\alpha = [\alpha_1, \ldots, \alpha_p]'$ and β are path independent, and where

$$\Gamma_t = \Gamma(X_t) = (\gamma_o + \gamma' X_t) = \gamma_o + \gamma_1 x_t + \ldots + \gamma_p x_{t-p+1}.$$

 \Box The no-arbitrage restriction $E_t(M_{t,t+1}) = \exp(-r_t)$, implies the relation $r_t = \beta + \alpha' X_t$.

4.2.3 The Risk Premium

 \Box Given the definition of risk premium introduced in Lecture 3 (Part III):

$$\lambda_t = \log E_t \left(\frac{P_{t+1}}{P_t} \right) - r_t = \log E_t \exp(y_{t+1}) - r_t,$$

 \Box and given the same payoff $\exp(-bx_{t+1})$ at t+1, its price in t is given by:

$$P_{t} = E_{t} \left[M_{t,t+1} P_{t+1} \right] = \exp \left[-r_{t} - b(\nu + \varphi' X_{t}) - b\sigma \Gamma_{t} + \frac{1}{2} (b\sigma)^{2} \right],$$

$$E_{t} P_{t+1} = E_{t} \left[\exp(-bx_{t+1}) \right] = \exp \left[-b(\nu + \varphi' X_{t}) + \frac{1}{2} (b\sigma)^{2} \right].$$

□ the risk premium is $\lambda_t = b \sigma \Gamma_t = b \sigma (\gamma_o + \gamma' X_t)$. It is function of the *p* most recent lagged values of the factor x_{t+1} . The recent past (and not only the present value

 x_t) determine the risk premium level in t.

4.2.4 The Affine Term Structure of Interest Rates

 \Box The price at date t of the zero-coupon bond with time to maturity h is :

$$B(t, t+h) = \exp(c'_h X_t + d_h), \ h \ge 1,$$

 \Box where c_h and d_h satisfies the recursive equations :

$$c_{h} = -\alpha + \Phi' c_{h-1} + c_{1,h-1} \sigma \gamma = -\alpha + \Phi^{*'} c_{h-1},$$

$$d_{h} = -\beta + c_{1,h-1} (\nu + \gamma_{o} \sigma) + \frac{1}{2} c_{1,h-1}^{2} \sigma^{2} + d_{h-1},$$

 \Box with :

$$\Phi^* = \begin{bmatrix} \varphi_1 + \sigma \gamma_1 & \dots & \varphi_{p-1} + \sigma \gamma_{p-1} & \varphi_p + \sigma \gamma_p \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & \dots & 1 & 0 \end{bmatrix}$$

□ The initial conditions are $c_0 = 0, d_0 = 0$ (or $c_1 = -\alpha, d_1 = -\beta$); $c_{1,h}$ is the first component of the *p*-dimensional vector c_h [Proof : exercise].

□ The continuously compounded term structure of interest rates is given by:

$$R(t,t+h) = -\frac{1}{h} \log B(t,t+h) = -\frac{c'_h}{h} X_t - \frac{d_h}{h}, \quad h \ge 1,$$

□ For a given date t, any yield R(t, t+h) is an affine function of the factor X_t , that is of the p most recent lagged values of x_{t+1} .

4.2.5 Excess Returns of Zero-Coupon Bonds

□ Under no-arbitrage, and for a fixed maturity *T*, the one-period geometric zerocoupon bond return process $\rho = [\rho(t,T), 0 \le t \le T]$, where $\rho(t+1,T) = \log [B(t+1,T)] - \log [B(t,T)]$, is given by:

$$\rho(t+1, T) = r_t - \frac{1}{2}\omega(t+1, T)^2 + \omega(t+1, T)\Gamma_t - \omega(t+1, T)\varepsilon_{t+1},$$

where $\omega(t+1, T) = -(\sigma c_{1,T-t-1})$ [Proof : exercise].

 \Box This means that the process ρ is such that:

$$\rho(t+1,T) | \underline{x}_t \sim N \left[\mu(t+1,T), \omega(t+1,T)^2 \right]$$

where $\mu(t+1,T) = r_t - \frac{1}{2}\omega(t+1,T)^2 + \omega(t+1,T)\Gamma_t$,
and $\omega(t+1,T)^2 = (\sigma c_{1,T-t-1})^2$.

5()
----	---

 \Box The associated risk premium between t and t+1, denoted by $\lambda_t(T)$, is:

$$\lambda_t(T) = \log E_t \exp[\rho(t+1, T)] - r_t = \omega(t+1, T) \Gamma_t = \omega(t+1, T) (\gamma_o + \gamma' X_t).$$

□ We note that $\Gamma_t = (\gamma_o + \gamma' X_t)$ plays for any *T* the role of a risk premium per unit of "risk" $\omega(t + 1, T)$.

□ In particular, the variability of $\lambda_t(T)$ is driven, for a fixed γ different from zero, by the *p* most recent lagged values of x_{t+1} .

4.2.6 Risk-Neutral Dynamics

 $\Box \text{ The risk-neutral Laplace transform of } x_{t+1}, \text{ conditionally to } \underline{x_t}, \text{ is given by:}$ $E_t^{\mathbb{Q}}[\exp(ux_{t+1})] = \exp\left[u(\nu + \varphi'X_t) - \frac{1}{2}(\gamma_o + \gamma'X_t)^2\right] E_t[\exp(\gamma_o + \gamma'X_t + u\sigma)\varepsilon_{t+1}]$ $= \exp\left[u[(\nu + \sigma\gamma_o) + (\varphi + \sigma\gamma)'X_t] + \frac{1}{2}u^2\sigma^2\right],$

where $\varphi = [\varphi_1, \ldots, \varphi_p]'$ [Proof : exercise]. Therefore, we get the following result.

□ Under the risk-neutral probability \mathbb{Q} , x_{t+1} is an AR(p) process of the following type:

$$x_{t+1} = \nu^* + \varphi_1^* x_t + \ldots + \varphi_p^* x_{t+1-p} + \sigma^* \eta_{t+1},$$

□ with

$$\begin{split} \nu^* &= (\nu + \sigma \gamma_o), \ \varphi_i^* = (\varphi_i + \sigma \gamma_i) \quad \text{for } i \in \{1, \dots, p\} \\ \sigma^* &= \sigma \,, \end{split}$$

where $\eta_{t+1} \stackrel{\mathbb{Q}}{\sim} \mathcal{IIN}(0,1)$. Note that $\varepsilon_{t+1} = \eta_{t+1} + \Gamma_t$.

 \Box This model can be represented in the following vectorial form :

$$X_{t+1} = \tilde{\nu}^* + \Phi^* X_t + \sigma^* \tilde{\eta}_{t+1},$$

 \square where $\tilde{\nu}^* = [\nu^*, 0, \dots, 0]'$ and $\tilde{\eta}_{t+1} = [\eta_{t+1}, 0, \dots, 0]'$ are *p*-dimensional vectors.

4.2.7 The Gaussian AR(p) short-rate model

□ We assume that the factor $x_{t+1} = r_{t+1}$ is a Gaussian AR(*p*) process of the following type:

$$r_{t+1} = \nu + \varphi_1 r_t + \ldots + \varphi_p r_{t-p+1} + \sigma \varepsilon_{t+1},$$

□ we have the same SDF, but now the AAO condition $E_t(M_{t,t+1}) = \exp(-r_t)$ implies $\beta = 0$ and $\alpha = (1, 0, ..., 0)' \in \mathbb{R}^p$. We have to guarantee that the theoretical formula R(t, t+h) generates, when h = 1, exactly the short rate process we have assumed under \mathbb{P} .

 \Box Clearly, under $\mathbb Q$ we have:

$$r_{t+1} = \nu^* + \varphi_1^* r_t + \ldots + \varphi_p^* r_{t-p+1} + \sigma \eta_{t+1},$$

□ It is the discrete-time "multiple lags" generalization of the continuous-time Vasicek (1977) model.

4.2.8 The *S*-Forward Dynamics

□ The S-forward dynamics of x_{t+1} has an AR(p) representation of the following type:

$$x_{t+1} = \nu_S + \varphi_1^* x_t + \ldots + \varphi_p^* x_{t+1-p} + \sigma^* \xi_{t+1},$$

 \Box with

$$\nu_S = \nu^* - \sigma^* \omega(t+1,S) \,,$$

 \square and where $\xi_{t+1} \sim \mathcal{IIN}(0,1)$ under \mathbb{Q}_S [Proof : exercise]. Observe that $\varepsilon_{t+1} =$

 $\xi_{t+1} - \omega(t+1, S) + \Gamma_t$, where $\Gamma_t = \gamma_o + \gamma' X_t$.

 $\hfill\square$ In the S -forward framework, the one-period geometric zero-coupon bond return

process is described by the relation:

$$\rho(t+1, T) = -\omega(t+1, T) \xi_{t+1} + r_t - \frac{1}{2}\omega(t+1, T)^2 + \omega(t+1, T)\omega(t+1, S),$$

 \Box with a one-period risk premium given by :

$$\lambda_t^{\mathbb{Q}^{(S)}}(T) = \log E_t^{\mathbb{Q}^{(S)}} \exp \left[\rho(t+1, T)\right] - r_t = \omega(t+1, T)\omega(t+1, S),$$

[Proof : exercise].

Consequently, under the *T*-forward probability, the one-period risk premium per unit of $\omega(t+1, T)$ is given by the $\omega(t+1, T)$ itself.

4.2.9 Yield Curve Shapes

- □ Which kind of yield curve shapes are we able to generate thanks to the introduction of lagged factor values ?
- \Box Compared to the Gaussian AR(1) case, are we able to generate yield curves closer to the observed ones ?
- Let us consider (from CRSP) a data set on the U. S. term structure of interest rates (treasury zero-coupon bond yields), covering the period from June 1964 to December 1995. We have 379 monthly observations for each of the nine maturities : 1, 3, 6 and 9 months and 1, 2, 3, 4 and 5 years.

Table 1 : Summary Statistics on U. S. Monthly Yields from June 1964 to December 1995.

ACF(k) indicates the empirical autocorrelation between yields R(t,h) and R(t-k,h), with h and

k expressed on a monthly basis.

Maturity	1-m	3-m	6-m	9-m	1-yr	2-yr	3-yr	4-yr	5-yr
Mean Std. Dev. Skewness Kurtosis Minimum Maximum	$0.0645 \\ 0.0265 \\ 1.2111 \\ 4.5902 \\ 0.0265 \\ 0.1640$	0.0672 0.0271 1.2118 4.5237 0.0277 0.1612	0.0694 0.0270 1.1518 4.3147 0.0287 0.1655	$0.0709 \\ 0.0269 \\ 1.1013 \\ 4.1605 \\ 0.0299 \\ 0.1644$	0.0713 0.0260 1.0307 3.9098 0.0311 0.1581	0.0734 0.0252 0.9778 3.6612 0.0366 0.1564	0.0750 0.0244 0.9615 3.5897 0.0387 0.1556	0.0762 0.0240 0.9263 3.5063 0.0397 0.1582	0.0769 0.0237 0.8791 3.3531 0.0398 0.1500
ACF(1) ACF(5) ACF(10) ACF(20) ACF(30) ACF(40)	0.9587 0.8288 0.7278 0.4303 0.2548 0.1362	0.9731 0.8531 0.7590 0.4631 0.2682 0.1415	0.9747 0.8579 0.7691 0.4880 0.3016 0.1677	0.9745 0.8588 0.7699 0.4996 0.3213 0.1853	0.9727 0.8604 0.7683 0.5156 0.3518 0.2160	0.9780 0.8783 0.7885 0.5742 0.4358 0.3056	0.9797 0.8915 0.8021 0.6051 0.4725 0.3427	0.9802 0.8986 0.8075 0.6193 0.4994 0.3780	0.9822 0.9053 0.8212 0.6431 0.5187 0.3961

 \Box The term structure of ZCB yields is, on average:

- upward sloping
- and the yields with larger standard deviation, positive skewness and kurtosis are those with shorter maturities.
- Moreover, yields are **highly autocorrelated** with a persistence which is increasing with the time to maturity.

 \Box Let us take as factor the 1-month yield : $r_t = R(t, t + 1 month)$

□ Figures A, B, C and D: examples of observed yield curves in the data base.

 \Box Figures from 1 to 4: yield curves generated by a Gaussian AR(1) ATSM.

 \hookrightarrow Shapes can be only monotone increasing/decreasing, flat or with hump.

 \Box Figures from 5 to 8: yield curves generated by a Gaussian AR(2) ATSM.

 \hookrightarrow Richer but not really realistic shapes.

 \Box Figures from 9 to 12: yield curves generated by a Gaussian AR(3) ATSM.

 \hookrightarrow Richer and more realistic shapes (two humps).

□ Nevertheless, we have to keep in mind that the shapes we have seen have been generated by **chosen** (*and not estimated* !) **parameter values** !

□ If we want to realistically verify the ability of Gaussian AR(p) ATSMs models to generate yield curves closer to the observed one, we have to:

- a) first, estimate the parameters of the model
- b) **second**, generate the yield curves by means of the yield curve formula, fixing parameter values to their estimated values.
- c) **third**, compare them with other possible (competing) yield curve models: which model fit the observed yield curves better (i.e. smallest pricing errors) ?

Using estimated parameters

 \Box Figures from 1 to 4 (slide 30) : AR(1) model-implied yield curve shapes.

 \Box Figures from 1 to 6 (slide 31): AR(3) model-implied yield curve shapes.

 \Box Figures from 1 to 6 (slide 32): AR(4) model-implied yield curve shapes.

 \Box Figures from 1 to 6 (slide 33): AR(5) model-implied yield curve shapes.

 \Box Figures from 1 to 6 (slide 34): AR(6) model-implied yield curve shapes.

Fixed Income and Credit Risk

Lecture 4 - Part II

Discrete-Time Bivariate Gaussian

VAR(1) Term Structure Models
Outline of Lecture 4 - Part II

- 4.3 Bivariate Gaussian VAR(1) Factor-Based Term Structure Models
 - 4.3.1 Historical Dynamics
 - 4.3.2 The Stochastic Discount Factor
 - 4.3.3 The Risk Premium
 - 4.3.4 The Affine Term Structure of Interest Rates
 - 4.3.5 Excess Returns of Zero-Coupon Bonds
 - 4.3.6 The Bivariate Gaussian VAR(1) Observable Factor-Based Model

4.3 Gaussian VAR(1) Factor-Based Term Structure Models

4.3.1 Historical Dynamics

 \Box We consider our discrete-time economy between dates 0 and T.

- \Box x_t is our **factor or a state vector**, and it may be observable, partially observable or unobservable by the econometrician.
- □ The Gaussian AR(p) ATSM is (at estimated parameters) not able to completely explain the variability over time and maturities of the observed yield curves \Rightarrow we need more information, i.e. more factors!

 \Box The size of $x_t = (x_{1,t}, x_{2,t})'$ is now assumed to be K = 2.

The **historical dynamics** of x_t is defined by the joint distribution of $\underline{x}_T = (x_0, \ldots, x_T)$, denoted by \mathbb{P} , or by the conditional probability density function (p.d.f.):

$$f_t(x_{1,t+1},x_{2,t+1}|\underline{x}_t),$$

 \Box or by the **conditional Laplace transform** (L.T.):

$$\varphi_t(u|\underline{x}_t) = E[\exp(u_1 x_{1,t+1} + u_2 x_{2,t+1}) | \underline{x}_t] = E[\exp(u' x_{t+1}) | \underline{x}_t] = E_t[\exp(u' x_{t+1})],$$

which is assumed to be defined in an open convex set of \mathbb{R}^2 (containing zero).

□ We also introduce the **conditional Log-Laplace transform**:

$$\psi_t(u|\underline{x}_t) = \psi_t(u) = \text{Log}[\varphi_t(u|\underline{x}_t)].$$

 \Box Let us assume that the (non observable) 2-dimensional factor $x_{t+1} = (x_{1,t+1}, x_{2,t+1})'$

is a Gaussian VAR(1) process of the following type:

$$x_{t+1} = \nu + \Phi x_t + \Sigma \varepsilon_{t+1} = \begin{bmatrix} \nu_1 \\ \nu_2 \end{bmatrix} + \begin{bmatrix} \varphi_{11} & \varphi_{12} \\ \varphi_{21} & \varphi_{22} \end{bmatrix} x_t + \Sigma \begin{bmatrix} \varepsilon_{1,t} \\ \varepsilon_{2,t} \end{bmatrix},$$

where ε_t is a 2-dimensional Gaussian white noise with $\mathcal{N}(0, I_2)$ distribution.

 \Box $E_t[x_{t+1}] = \nu + \Phi x_t$ and $V_t[x_{t+1}] = \Sigma \Sigma' = \Omega$ (symmetric positive semi-definite),

$$\Rightarrow x_{t+1} \mid x_t \sim N_K(\nu + \Phi x_t, \Omega) \text{ (under } \mathbb{P}\text{)}.$$

 \Box At date t, the k-step ahead forecast (denoted $x_{t+k|t}^e$) with a VAR(1) model:

$$x_{t+k|t}^e := E_t[x_{t+k}] = (I_2 + \Phi + \ldots + \Phi^{k-1})\nu + \Phi^k x_t$$

 \Box We do not have a unique decomposition of Ω :

- $\Sigma = (\sigma_{i,j})$ can be chosen lower triangular (in general : Choleski decomposition) to guarantee $\Omega > 0$ and symmetric.
- Using Choleski ($\Sigma = (\sigma_{i,j}^c)$) we impose $\sigma_{i,i}^c > 0$, $i \in \{1,2\}$, to solve identification problems.
- □ Under stationarity (i.e. all values of z such that $|I_2 \Phi_z| = 0$ lie outside the unit circle), we have
 - $E[x_t] = (I_2 \Phi)^{-1} \nu$ and $V[x_t]$ is such that $vec(V[x_t]) = (I_{2^2} \Phi \otimes \Phi)^{-1} vec(\Omega)$,

 $\Rightarrow x_t \sim N_2(E[x_t], V[x_t]) \text{ (under } \mathbb{P}).$

□ Let us remember that the Laplace transform of a 2-dimensional Gaussian random variable $Y \sim N_2(\mu, \Xi)$, with $\mu = (\mu_1, \mu_2)'$, $\Xi_{11} = V[Y_1]$, $\Xi_{22} = V[Y_2]$, $\Xi_{12} = Cov[Y_1, Y_2] = \Xi_{21}$, is:

$$\varphi(u) = E[\exp(u_1Y_1 + u_2Y_2)] = \exp\left(u'\mu + \frac{1}{2}u'\Xi u\right)$$

= $\exp\left[(u_1\mu_1 + u_2\mu_2) + \frac{1}{2}(u_1^2V[Y_1] + u_2^2V[Y_2] + 2u_1u_2Cov[Y_1, Y_2])\right]$

 \Box This means that:

$$\varphi_t(u|\underline{x}_t) = \varphi_t(u) = \exp\left[u'(\nu + \Phi x_t) + \frac{1}{2}u'\Omega u\right] = \exp\left[(u'\nu + \frac{1}{2}u'\Omega u) + u'\Phi x_t\right],$$

and

$$E[\exp(u'x_t)] = \exp\left[u'E[x_t] + \frac{1}{2}u'V[x_t]u\right]$$

4.3.2 The Stochastic Discount Factor

 \Box We specify the following SDF:

$$M_{t,t+1} = \exp\left[-\beta - \alpha' x_t + \Gamma'_t \varepsilon_{t+1} - \frac{1}{2} \Gamma'_t \Gamma_t\right],$$

 \Box the coefficients $\alpha = [\alpha_1, \alpha_2]'$ and β are path independent,

 \Box $\Gamma_t = \Gamma(X_t) = (\gamma_o + \gamma x_t)$, where $\gamma_o = (\gamma_{1,o}, \gamma_{2,o})'$ and γ is a (2,2)-matrix:

$$\Gamma_{1,t} = \gamma_{o,1} + \gamma_{1,1} x_{1,t} + \gamma_{1,2} x_{2,t} = \gamma_{1,o} + \widetilde{\gamma}'_1 x_t$$

$$\Gamma_{2,t} = \gamma_{o,2} + \gamma_{2,1} x_{1,t} + \gamma_{2,2} x_{2,t} = \gamma_{2,o} + \widetilde{\gamma}'_2 x_t.$$

- This means that, at any date t, the risk-correction coefficients associated to the first and second factor, i.e. $\Gamma_{1,t}$ and $\Gamma_{2,t}$ respectively, are a linear combination of BOTH scalar factors $x_{1,t}$ and $x_{2,t}$.
- \Box The no-arbitrage restriction $E_t(M_{t,t+1}) = \exp(-r_t)$, implies the relation

 $r_t = \beta + \alpha' x_t = \beta + \alpha_1 x_{1,t} + \alpha_2 x_{2,t}.$

 \rightarrow Thus, we now assume that the short rate has a dynamics explained by two variables (two factors) like, for instance, short and long rate, short rate and spread, one yield and one macro variable, level and slope factors.

4.3.3 The Risk Premium

 \Box Given the following definition of risk premium:

$$\lambda_t = \log E_t \left(\frac{P_{t+1}}{P_t} \right) - r_t = \log E_t \exp(y_{t+1}) - r_t,$$

 \Box and given the payoff $\exp(-b'x_{t+1})$ at t+1, its price in t is given by:

$$P_{t} = E_{t} \left[M_{t,t+1} P_{t+1} \right] = \exp \left[-r_{t} - b'(\nu + \Phi x_{t}) - b' \Sigma \Gamma_{t} + \frac{1}{2} b' \Omega b \right],$$

$$E_{t} P_{t+1} = E_{t} \left[\exp(-b' x_{t+1}) \right] = \exp \left[-b'(\nu + \Phi' x_{t}) + \frac{1}{2} b' \Omega b \right].$$

□ the risk premium is $\lambda_t = b' \Sigma \Gamma_t = b' \Sigma (\gamma_o + \gamma x_t)$. It is function of the 2-dimensional factor x_t .

4.3.4 The Affine Term Structure of Interest Rates

 \Box The price at date t of the zero-coupon bond with time to maturity h is :

$$B(t, t+h) = \exp(C'_h x_t + D_h) = \exp(C_{1,h} x_{1,t} + C_{2,h} x_{2,t} + D_h), \ h \ge 1,$$

 \Box where c_h and d_h satisfies, for $h \ge 1$, the recursive equations:

$$\begin{cases} C_h = -\alpha + (\Phi + \Sigma \gamma)' C_{h-1} \\ = -\alpha + \Phi^{*'} C_{h-1}, \\ D_h = -\beta + C'_{h-1} (\nu + \Sigma \gamma_o) + \frac{1}{2} C'_{h-1} (\Sigma \Sigma') C_{h-1} + D_{h-1} \\ = -\beta + C'_{h-1} \nu^* + \frac{1}{2} C'_{h-1} \Omega C_{h-1} + D_{h-1}, \end{cases}$$

 \Box with initial conditions $C_0 = 0, D_0 = 0$ (or $C_1 = -\alpha, D_1 = -\beta$).

 \Box The affine term structure of interest rates formula is:

$$R(t,t+h) = -\frac{1}{h} \log B(t,t+h) = -\frac{C'_h}{h} x_t - \frac{D_h}{h}$$
$$= -\frac{1}{h} (C_{1,h} x_{1,t} + C_{2,h} x_{2,t} + D_h), \quad h \ge 1,$$

□ For a given date *t*, any yield R(t, t + h) is an affine function of the 2-dimensional factor $x_t = (x_{1,t}, x_{2,t})'$.

□ This is the discrete-time equivalent of the bivariate (continuous-time affine) Vasicek model.

4.3.5 Gaussian Bivariate VAR(1) Observable Factor-Based Model

- The 2-dimensional factor (x_t) can be considered as a vector of two yields: the first component is assumed to be the short rate r_t and the second one is the long rate R_t .
- \Box More precisely, we assume:

$$x_t = \begin{bmatrix} R(t, t+1) \\ R(t, t+H) \end{bmatrix}$$

where $R(t, t + 1) = r_t$ and $R(t, t + H) = R_t$.

 \Box we can start better understanding the role of the no-arbitrage restrictions.

□ First, I have to impose that $R(t, t + 1) = r_t$. This condition generates the AAO restriction:

$$R(t, t+1) = \beta + \alpha' x_t = \beta + \alpha_1 r_t + \alpha_2 R_t = r_t$$
$$\Leftrightarrow \beta = 0, \ \alpha_1 = 1, \ \alpha_2 = 0,$$

These conditions are equivalent to $C_1 = -(1,0)$ and $D_1 = 0$.

 \Box Second, I have to impose that $R(t, t + H) = R_t$ for any t. In this case we have:

$$-\frac{1}{H}[C_{1,H}r_t + C_{2,H}R_t + D_H] = R_t$$

$$\Leftrightarrow C_{1,H}r_t + C_{2,H}R_t + D_H = -HR_t$$

$$\Leftrightarrow C_{1,H} = 0, \ C_{2,H} = -H, \ D_H = 0,$$

that is $C_H = -H(0, 1)'$ and $D_H = 0$.

C	2	
С	2	Э
-	-	-

 \Box In this case, the absence of arbitrage conditions for the 2 yields in x_t imply :

(i)
$$C_1 = -(1,0)', D_1 = 0,$$

(ii) $C_H = -H(0,1)', D_H = 0.$

 \Box The first set of conditions is used as initial value in the recursive equations (C_h, D_h) .

 \Box The second condition imply restrictions on model parameters which must be taken into account at the estimation stage. We have to impose to the yield-to-maturity formula to pass through the yields in x_t .

Fixed Income and Credit Risk

Lecture 4 - Part III

Discrete-Time Multivariate Gaussian

VAR(*p*) **Term Structure Models**

Outline of Lecture 4 - Part III

- 4.4 Gaussian VAR(1) Factor-Based Term Structure Models
 - 4.4.1 Historical Dynamics
 - 4.4.2 The Stochastic Discount Factor
 - 4.4.3 The Risk Premium
 - 4.4.4 The Affine Term Structure of Interest Rates
 - 4.4.5 Excess Returns of Zero-Coupon Bonds
 - 4.4.6 Risk-Neutral Dynamics

4.4.7 Gaussian VAR(1) Observable Factor-Based Model

4.4.8 The S-Forward Dynamics

4.5 Gaussian VAR(p) Factor-Based Term Structure Models

4.5.1 Historical Dynamics, Stochastic Discount Factor and Affine Term Structure

4.5.2 Risk-Neutral Dynamics

4.5.3 The Gaussian VAR(p) Observable Factor-Based Model

4.5.4 The *S*-Forward Dynamics

- 4.4 Gaussian VAR(1) Factor-Based Term Structure Models
- 4.4.1 Historical Dynamics

 \Box We consider our discrete-time economy between dates 0 and T.

- \Box x_t is our **factor or a state vector**, and it may be observable, partially observable or unobservable by the econometrician.
- □ The Gaussian AR(p) ATSM is (at estimated parameters) not able to completely explain the variability over time and maturities of the observed yield curves \Rightarrow we need more information, i.e. more factors!
- \Box The size of x_t is now assumed to be K > 1.

The **historical dynamics** of x_t is defined by the joint distribution of $\underline{x}_T = (x_0, \ldots, x_T)$, denoted by \mathbb{P} , or by the conditional probability density function (p.d.f.):

 $f_t(x_{t+1}|\underline{x}_t),$

 \Box or by the **conditional Laplace transform** (L.T.):

$$\varphi_t(u|\underline{x}_t) = \varphi_t(u) = E[\exp(u'x_{t+1})|\underline{x}_t] = E_t[\exp(u'x_{t+1})],$$

which is assumed to be defined in an open convex set of \mathbb{R}^{K} (containing zero).

□ We also introduce the **conditional Log-Laplace transform**:

$$\psi_t(u|\underline{x}_t) = \psi_t(u) = \text{Log}[\varphi_t(u|\underline{x}_t)].$$

□ Let us assume that the (non observable) *K*-dimensional factor $x_{t+1} = (x_{1,t+1}, ..., x_{K,t+1})'$ is a Gaussian VAR(1) process of the following type:

$$x_{t+1} = \nu + \Phi x_t + \Sigma \varepsilon_{t+1},$$

where $\varepsilon_{t+1} = (\varepsilon_{1,t+1}, \dots, \varepsilon_{K,t+1})$ is a *K*-dimensional Gaussian white noise with $\mathcal{N}(0, I_K)$ distribution.

 \Box $E_t[x_{t+1}] = \nu + \Phi x_t$ and $V_t[x_{t+1}] = \Sigma \Sigma' = \Omega$ (symmetric positive semi-definite),

 $\Rightarrow x_{t+1} \mid x_t \sim N_K(\nu + \Phi x_t, \Omega) \text{ (under } \mathbb{P}\text{).}$

 \Box We do not have a unique decomposition of Ω :

- $\Sigma = (\sigma_{i,j})$ can be chosen lower triangular (in general : Choleski decomposition) to guarantee $\Omega > 0$ and symmetric.
- Using Choleski ($\Sigma = (\sigma_{i,j}^c)$) we impose $\sigma_{i,i}^c > 0$, $i \in \{1, \dots, K\}$, to solve identification problems.
- □ Under stationarity (i.e. all values of z such that $|I_K \Phi z| = 0$ lie outside the unit circle), we have
 - $E[x_t] = (I_K \Phi)^{-1} \nu$ and $V[x_t]$ is such that $vec(V[x_t]) = (I_{K^2} \Phi \otimes \Phi)^{-1} vec(\Omega)$,

 $\Rightarrow x_t \sim N_K(E[x_t], V[x_t])$ (under \mathbb{P}).

□ Let us remember that the Laplace transform of a *K*-dimensional Gaussian random variable $Y \sim N_K(\mu, \Xi)$ is:

$$\varphi(u) = E[\exp(u'Y)] = \exp\left(u'\mu + \frac{1}{2}u'\Xi u\right).$$

$$\Box$$
 This means that:

$$\varphi_t(u|\underline{x}_t) = \varphi_t(u) = \exp\left[u'(\nu + \Phi x_t) + \frac{1}{2}u'\Omega u\right],$$

 \square and

$$E[\exp(u'x_t)] = \exp\left[u'E[x_t] + \frac{1}{2}u'V[x_t]u\right].$$

4.4.2 The Stochastic Discount Factor

 \Box We specify the following SDF:

$$M_{t,t+1} = \exp\left[-\beta - \alpha' x_t + \Gamma'_t \varepsilon_{t+1} - \frac{1}{2} \Gamma'_t \Gamma_t\right],$$

 \Box the coefficients $\alpha = [\alpha_1, \ldots, \alpha_K]'$ and β are path independent,

$$\Box \ \Gamma_t = \Gamma(X_t) = (\gamma_o + \gamma x_t), \text{ where } \gamma_o = (\gamma_{1,o}, \dots, \gamma_{K,o})' \text{ and } \gamma \text{ is a } (K, K) \text{-matrix:}$$

$$\Gamma_{1,t} = \gamma_{1,o} + \gamma_{1,1} x_{1,t} + \gamma_{1,2} x_{2,t} + \dots + \gamma_{1,K} x_{K,t} = \gamma_{1,o} + \widetilde{\gamma}'_1 x_t$$

$$\vdots$$

$$\Gamma_{K,t} = \gamma_{K,o} + \gamma_{K,1} x_{1,t} + \gamma_{K,2} x_{2,t} + \dots + \gamma_{K,K} x_{K,t} = \gamma_{K,o} + \widetilde{\gamma}'_K x_t.$$

- This means that, at any date t, the risk-correction coefficient associated to the j^{th} factor, i.e. $\Gamma_{j,t}$, is a linear combination of ALL the K scalar factors.
- \Box The no-arbitrage restriction $E_t(M_{t,t+1}) = \exp(-r_t)$, implies the relation $r_t = \beta + \alpha' x_t = \beta + \alpha_1 x_{1,t} + \ldots + \alpha_K x_{K,t}$.
- \rightarrow Now, the short rate is explained by a linear combination of K variables that we can select as a mix of yields, latent factors (level/slope) and macro variables.

4.4.3 The Risk Premium

 \Box Given the risk premium :

$$\lambda_t = \log E_t \left(\frac{P_{t+1}}{P_t} \right) - r_t = \log E_t \exp(y_{t+1}) - r_t,$$

 \Box and given the payoff $\exp(-b'x_{t+1})$ at t+1, its price in t is given by:

$$P_{t} = E_{t} \left[M_{t,t+1} P_{t+1} \right] = \exp \left[-r_{t} - b'(\nu + \Phi x_{t}) - b' \Sigma \Gamma_{t} + \frac{1}{2} b' \Omega b \right],$$

$$E_{t} P_{t+1} = E_{t} \left[\exp(-b' x_{t+1}) \right] = \exp \left[-b'(\nu + \Phi' x_{t}) + \frac{1}{2} b' \Omega b \right].$$

□ the risk premium is $\lambda_t = b' \Sigma \Gamma_t = b' \Sigma (\gamma_o + \gamma x_t)$. It is function of the *K*-dimensional factor x_t .

4.4.4 The Affine Term Structure of Interest Rates

 \Box The price at date t of the zero-coupon bond with time to maturity h is :

$$B(t, t+h) = \exp(C'_h x_t + D_h) = \exp(C_{1,h} x_{1,t} + \ldots + C_{K,h} x_{K,t} + D_h), \ h \ge 1,$$

 \Box where c_h and d_h satisfies, for $h \ge 1$, the recursive equations:

$$\begin{cases} C_h = -\alpha + (\Phi + \Sigma \gamma)' C_{h-1} \\ = -\alpha + \Phi^{*'} C_{h-1}, \\ D_h = -\beta + C'_{h-1} (\nu + \Sigma \gamma_o) + \frac{1}{2} C'_{h-1} (\Sigma \Sigma') C_{h-1} + D_{h-1} \\ = -\beta + C'_{h-1} \nu^* + \frac{1}{2} C'_{h-1} \Omega C_{h-1} + D_{h-1}, \end{cases}$$

 \Box with initial conditions $C_0 = 0, D_0 = 0$ (or $C_1 = -\alpha, D_1 = -\beta$).

□ The (continuously compounded) affine term structure of interest rates is given by:

$$R(t, t+h) = -\frac{1}{h} \log B(t, t+h) = -\frac{C'_h}{h} x_t - \frac{D_h}{h}, \quad h \ge 1,$$

□ For a given date *t*, any yield R(t, t+h) is an affine function of the *K*-dimensional factor $x_t = (x_{1,t}, \ldots, x_{K,t})'$.

This is the discrete-time equivalent of the multivariate (continuous-time affine)
 Vasicek model.

4.4.5 Excess Returns of Zero-Coupon Bonds

Under no-arbitrage, and for a fixed maturity T, the one-period geometric zerocoupon bond return process $\rho = [\rho(t,T), 0 \le t \le T]$, where $\rho(t+1,T) = \log [B(t+1,T)] - \log [B(t,T)]$, is given by:

$$\rho(t+1, T) = r_t - \frac{1}{2}\omega(t+1, T)'\omega(t+1, T) + \omega(t+1, T)'\Gamma_t - \omega(t+1, T)'\varepsilon_{t+1},$$

where $\omega(t+1, T) = -(\Sigma' C_{T-t-1})$ is an *K*-dimensional vector.

The associated risk premium, between t and t + 1, is given by :

$$\lambda_t(T) = \omega(t+1, T)' \Gamma_t = \sum_{i=1}^K \omega_i(t+1, T) \Gamma_{i,t},$$

where $\omega(t+1, T) = [\omega_1(t+1, T), \dots, \omega_K(t+1, T)]'$.

- □ It is important to highlight that, in this multivariate setting, the magnitude of $\lambda_t(T)$ is given by a linear combination of the *K* scalar risk premia $\Gamma_{i,t} = \gamma_{o,i} + \tilde{\gamma}'_i x_t$.
- □ In other words, ALL scalar factors $x_{i,t}$, with $i \in \{1, ..., K\}$, determine the magnitude and the variability over time of ANY (scalar) risk premia $\Gamma_{i,t}$.

4.4.6 Risk-Neutral Dynamics

 \Box The risk-neutral Laplace transform of x_{t+1} , conditionally to <u> x_t </u>, is given by:

$$E_t^{\mathbb{Q}}[\exp(u'x_{t+1})] = E_t \left[\frac{M_{t,t+1}}{E_t(M_{t,t+1})} \exp(u'x_{t+1}) \right]$$

= $E_t \left[\exp\left(\Gamma'_t \varepsilon_{t+1} - \frac{1}{2}\Gamma'_t \Gamma_t + u'x_{t+1}\right) \right]$
= $\exp\left[u'(\nu + \Phi x_t) - \frac{1}{2}\Gamma'_t \Gamma_t \right] E_t \left[\exp(\Gamma_t + \Sigma' u)' \varepsilon_{t+1} \right]$
= $\exp\left[u'[(\nu + \Sigma \gamma_o) + (\Phi + \Sigma \gamma) x_t] + \frac{1}{2}u'(\Sigma \Sigma') u \right].$

□ Under the risk neutral probability \mathbb{Q} , x_{t+1} is an *K*-dimensional VAR(1) process of the following type:

$$x_{t+1} = \nu^* + \Phi^* x_t + \Sigma^* \eta_{t+1},$$

□ with

$$\nu^* = (\nu + \sigma \gamma_o), \quad \Phi^* = (\Phi + \Sigma \gamma), \quad \Sigma^* = \Sigma,$$

□ and where η_{t+1} is (under \mathbb{Q}) an *K*-dimensional Gaussian white noise with $\mathcal{N}(0, I_K)$ distribution.

 \Box In the risk-neutral framework, for a fixed maturity *T*, the one-period geometric zero-coupon bond return process satisfies the relation:

$$\rho(t+1, T) = r_t - \frac{1}{2}\omega(t+1, T)'\omega(t+1, T) - \omega(t+1, T)'\eta_{t+1},$$

with a risk premium $\lambda_t^{\mathbb{Q}}(T) = 0$.

4.4.7 Gaussian VAR(1) Observable Factor-Based Model

□ The *K*-dimensional factor (x_t) can be considered as a vector of yields at different maturities in which the first component is assumed to be the short rate r_t .

 \Box More precisely, we assume:

$$x_t = \begin{bmatrix} R(t, t+h_1) \\ R(t, t+h_2) \\ \vdots \\ R(t, t+h_K) \end{bmatrix}$$

where $R(t, t + h_1) = R(t, t + 1) = r_t$ and $h_1 < h_2 < \ldots < h_K$.

 \Box let us see how no-arbitrage restrictions apply in this general setting.

 \Box In this case, the absence of arbitrage conditions for the K yields in x_t imply :

(i)
$$C_1 = -e_1, D_1 = 0,$$

(*ii*)
$$C_{h_j} = -h_j e_{h_j}, \quad D_{h_j} = 0, \forall j \in \{2, \ldots, K\},$$

where e_{h_j} denotes the h_j^{th} element of the canonical basis in \mathbb{R}^K .

- \Box The first set of conditions is used as initial value in the recursive equations (C_h, D_h) .
- The second set of (K 1) conditions imply restrictions on model parameters which must be taken into account at the estimation stage. We have to impose to the yield-to-maturity formula to pass through the yields in x_t .

4.4.8 The *S*-Forward Dynamics

□ The S-forward dynamics of the K-dimensional factor x_{t+1} has an VAR(1) representation of the following type:

$$x_{t+1} = \nu_S + \Phi^* x_t + \Sigma^* \xi_{t+1},$$

 \Box with

$$\nu_S = \nu^* - \Sigma^* \omega(t+1,S),$$

and where $\xi_{t+1} \sim \mathcal{IIN}(0, I)$ under $\mathbb{Q}^{(S)}$.

□ The one-period geometric zero-coupon bond return process is given by: $\rho(t+1, T) = r_t - \omega(t+1, T)' \varepsilon_{t+1} - c_{t+1}$

$$\begin{aligned} \phi(t+1,T) &= r_t - \omega(t+1,T)' \,\xi_{t+1} - \\ &\frac{1}{2} \,\omega(t+1,T)' \omega(t+1,T) + \,\omega(t+1,T)' \omega(t+1,S) \,, \end{aligned}$$

 \Box with one-period risk premium given by :

$$\lambda_t^{\mathbb{Q}^{(S)}}(T) = \log E_t^{\mathbb{Q}^{(S)}} \exp \left[\rho(t+1, T)\right] - r_t = \omega(t+1, T)' \omega(t+1, S).$$

4.5.1 Gaussian VAR(p) Factor-Based Term Structure Models

4.5.1 Historical Dynamics, SDF and Affine Term Structure

 $\Box \text{ Let us assume now that the latent factor } x_{t+1} = (x_{1,t+1}, \dots, x_{K,t+1})' \text{ driving the}$ term structure is an *K*-dimensional VAR(*p*) process of the following type: $x_{t+1} = \nu + \Phi_1 x_t + \dots + \Phi_p x_{t+1-p} + \Sigma \varepsilon_{t+1}$ (1)

$$= \nu + \Phi X_t + \Sigma \varepsilon_{t+1},$$

where ε_{t+1} is a K-dimensional Gaussian white noise with $\mathcal{N}(0, I_K)$ distribution.

 $\Box \Sigma$ and Φ_j , for each $j \in \{1, \ldots, p\}$, are (K, K) matrices and Σ can be chosen, for

instance, lower triangular (Choleski decomposition).
$\Box \ \Phi = [\Phi_1, \dots, \Phi_p] \text{ is an } (K, Kp) \text{ matrix, } \nu \text{ is an } K \text{-dimensional vector, while } X_t = (x'_t, \dots, x'_{t+1-p})' \text{ is an } (Kp) \text{-dimensional vector.}$

 \Box The model can be represented in the following (*Kp*)-dimensional AR(1) form:

$$X_{t+1} = \widetilde{\Phi} X_t + [\nu + \Sigma \varepsilon_{t+1}] e_1, \qquad (2)$$

where e_1 is a vector of size (Kp), with all entries equal to zero except for the

first K elements which are all equal to one

 \Box and where

$$\widetilde{\Phi} = \begin{bmatrix} \Phi_1 & \dots & \Phi_{p-1} & \Phi_p \\ I_K & \mathbf{0}_K & \dots & \mathbf{0}_K & \mathbf{0}_K \\ \mathbf{0}_K & I_K & \dots & \mathbf{0}_K & \mathbf{0}_K \\ \vdots & \ddots & \vdots & \vdots \\ \mathbf{0}_K & \dots & \dots & I_K & \mathbf{0}_K \end{bmatrix} \text{ is a } (Kp, Kp) \text{ matrix.}$$

$$\Box E_t[x_{t+1}] = \nu + \Phi_1 x_t + \ldots + \Phi_p x_{t+1-p} \text{ and } V_t[x_{t+1}] = \Sigma \Sigma' = \Omega,$$

$$\Rightarrow x_{t+1} \mid x_t \sim N(\nu + \Phi X_t, \Omega) \text{ (under } \mathbb{P}\text{)}.$$

□ Under stationarity (i.e. all values of z such that $|I_k - \sum_{j=1}^p \Phi_j z^j| = 0$ lie outside the unit circle), we have $E[x_t] = \left(I_K - \sum_{j=1}^p \Phi_j\right)^{-1} \nu$ and $V[x_t]$ [see Hamilton (1994, Chapter 10) and Lutkepohl (2005, Chapter 2)],

 $\Rightarrow x_t \sim N(E[x_t], V[x_t]) \text{ (under } \mathbb{P}).$

 \Box the SDF is defined as :

$$M_{t,t+1} = \exp\left[-\beta - \alpha' X_t + \Gamma'_t \varepsilon_{t+1} - \frac{1}{2} \Gamma'_t \Gamma_t\right], \qquad (3)$$

 \Box where $\Gamma_t = \gamma_o + \widetilde{\Gamma} X_t$, $\Gamma_t = [\Gamma_{1,t}, \dots, \Gamma_{K,t}]'$ and with:

$$\Gamma_{i,t} = \gamma_{o,i} + \sum_{j=1}^{p} \widetilde{\gamma}'_{i,j} x_{t-j+1}, \quad i \in \{1, \dots, K\}$$

$$(4)$$

with $\gamma_o = [\gamma_{o,1}, \ldots, \gamma_{o,K}]'$ a K-dimensional vector,

 $\hfill\square$ and where

$$\widetilde{\Gamma} = \begin{bmatrix} \widetilde{\gamma}'_{1,1} & \cdots & \widetilde{\gamma}'_{1,p-1} & \widetilde{\gamma}'_{1,p} \\ \widetilde{\gamma}'_{2,1} & \cdots & \widetilde{\gamma}'_{2,p-1} & \widetilde{\gamma}'_{2,p} \\ \vdots & \ddots & \vdots & \vdots \\ \widetilde{\gamma}'_{K,1} & \cdots & \cdots & \widetilde{\gamma}'_{K,p-1} & \widetilde{\gamma}'_{K,p} \end{bmatrix}$$
 is a (K, Kp) matrix. (5)

- □ Moreover, assuming the absence of arbitrage opportunities for r_t we get $r_t = \beta + \alpha' X_t$, where α is a (*Kp*)-dimensional vector.
- □ It is also easy to verify that the risk premium, for an asset providing the payoff $\exp(-b'x_{t+1})$ at t+1, is $\lambda_t = b'\Sigma\Gamma_t = b'\Sigma(\gamma_o + \widetilde{\Gamma}X_t)$.
- This means that the date-t risk-premium λ_t is determined by a linear combination of the p most recent lagged values of the K scalar factors $x_{i,t+1}$ with $i \in \{1, \ldots, K\}$.

 $\hfill\square$ In the Gaussian $\mathsf{VAR}(p)$ Factor-Based Term Structure Model, the price at date

t of the zero-coupon bond with time to maturity \boldsymbol{h} is :

$$B(t,t+h) = \exp(C'_h X_t + D_h), \qquad (6)$$

 \Box where C_h and D_h satisfies, for $h \geq 1$, the recursive equations :

$$\begin{cases} C_{h} = -\alpha + \widetilde{\Phi}' C_{h-1} + (\Sigma \widetilde{\Gamma})' C_{1,h-1} \\ = -\alpha + \widetilde{\Phi}^{*'} c_{h-1}, \\ D_{h} = -\beta + C'_{1,h-1} (\nu + \Sigma \gamma_{o}) + \frac{1}{2} C'_{1,h-1} (\Sigma \Sigma') C_{1,h-1} + D_{h-1}, \end{cases}$$
(7)

 \Box and where :

$$\widetilde{\Phi}^{*} = \begin{bmatrix} \Phi_{1} + \Sigma\gamma_{1} & \dots & \dots & \Phi_{p-1} + \Sigma\gamma_{p-1} & \Phi_{p} + \Sigma\gamma_{p} \\ I_{K} & 0_{K} & \dots & 0_{K} & 0_{K} \\ 0_{K} & I_{K} & \dots & 0_{K} & 0_{K} \\ \vdots & \ddots & \vdots & \vdots \\ 0_{K} & \dots & \dots & I_{K} & 0_{K} \end{bmatrix} \text{ is a } (Kp, Kp) \text{ matrix},$$

$$(8)$$

$$\gamma_{i}\text{'s are } (K, K) \text{ matrices such that } \widetilde{\Gamma} = [\gamma_{1}, \dots, \gamma_{p}]. \text{ That is } : \gamma_{i} = \begin{bmatrix} \widetilde{\gamma}_{1,i}' \\ \vdots \\ \widetilde{\gamma}_{K,i}' \end{bmatrix};$$

 \Box the initial conditions are $C_0 = 0, D_0 = 0$ (or $C_1 = -\alpha, D_1 = -\beta$), where $C_{1,h}$ indicates the vector of the first *K* components of the (*Kp*)-dimensional vector C_h .

 \Box The (continuously compounded) term structure of interest rates is given by:

$$R(t,t+h) = -\frac{1}{h} \log B(t,t+h) = -\frac{C'_h}{h} X_t - \frac{D_h}{h}, \quad h \ge 1,$$
(9)

□ For a given date t, any yield R(t, t+h) is an affine function of the factor X_t , that is of the p most recent lagged values of the K-dimensional factor x_{t+1} .

□ With regard to the one-period geometric zero-coupon bond return process $\rho = [\rho(t,T), 0 \le t \le T]$, it is easy to verify that :

$$\rho(t+1, T) = r_t - \frac{1}{2}\omega(t+1, T)'\omega(t+1, T) + \omega(t+1, T)'\Gamma_t - \omega(t+1, T)'\varepsilon_{t+1},$$

where $\omega(t+1, T) = -(\Sigma' C_{1,T-t-1})$ is an *K*-dimensional vector.

 \Box The associated risk premium, between t and t + 1, is given by :

$$\lambda_t(T) = \omega(t+1, T)' \Gamma_t = \sum_{i=1}^K \omega_i(t+1, T) \Gamma_{i,t}$$

= $\sum_{i=1}^K \omega_i(t+1, T) (\gamma_{o,i} + \sum_{j=1}^p \widetilde{\gamma}'_{i,j} x_{t-j+1}),$

where $\omega(t+1, T) = [\omega_1(t+1, T), \dots, \omega_K(t+1, T)]'$.

- \Box One may notice that, in this multivariate setting, the magnitude of $\lambda_t(T)$ is given by a linear combination of the *K* risk premia $\Gamma_{i,t} = \gamma_{o,i} + \sum_{j=1}^p \tilde{\gamma}'_{i,j} x_{t-j+1}$.
- \Box Moreover, for a given matrix $\widetilde{\Gamma}$ different from zero, $\lambda_t(T)$ is function of the p most recent lagged values of the K-dimensional factor x_{t+1} .

4.5.2 The Risk-Neutral Dynamics

 \Box The risk-neutral Laplace transform of x_{t+1} , conditionally to <u> x_t </u>, is given by:

$$E_t^{\mathbb{Q}}[\exp(u'x_{t+1})] = E_t \left[\frac{M_{t,t+1}}{E_t(M_{t,t+1})} \exp(u'x_{t+1}) \right]$$

= $E_t \left[\exp\left(\Gamma'_t \varepsilon_{t+1} - \frac{1}{2}\Gamma'_t \Gamma_t + u'x_{t+1}\right) \right]$
= $\exp\left[u'(\nu + \Phi X_t) - \frac{1}{2}\Gamma'_t \Gamma_t \right] E_t \left[\exp(\Gamma_t + \Sigma' u)' \varepsilon_{t+1} \right]$
= $\exp\left[u'[(\nu + \Sigma \gamma_o) + (\Phi + \Sigma \widetilde{\Gamma})X_t] + \frac{1}{2}u'(\Sigma \Sigma')u \right].$

□ Under the risk neutral probability \mathbb{Q} , x_{t+1} is a *K*-dimensional VAR(*p*) process of the following type:

$$x_{t+1} = \nu^* + \Phi_1^* x_t + \dots + \Phi_p^* x_{t+1-p} + \Sigma^* \eta_{t+1}$$

= $\nu^* + \Phi^* X_t + \Sigma^* \eta_{t+1}$, (10)

🗆 with

$$\nu^* = (\nu + \Sigma \gamma_o), \quad \Phi_j^* = (\Phi_j + \Sigma \gamma_j), \quad \text{for } j \in \{1, \dots, p\}$$

$$\Phi^* = [\Phi_1^*, \dots, \Phi_p^*], \quad \Sigma^* = \Sigma,$$

 \Box where η_{t+1} is (under \mathbb{Q}) an *K*-dimensional gaussian white noise with $\mathcal{N}(0, I_K)$ distribution.

 \Box This model can be represented in the following vectorial form :

$$X_{t+1} = \widetilde{\Phi}^* X_t + [\nu^* + \Sigma^* \eta_{t+1}] e_1,$$

where e_1 is the vector of size (Kp), with all entries equal to zero except for the first K elements which are all equal to one.

4.5.3 The Gaussian VAR(p) Observable Factor-Based Model

 \Box It is like in the previous lecture, with

$$x_t = \begin{bmatrix} R(t, t+h_1) \\ R(t, t+h_2) \\ \vdots \\ R(t, t+h_K) \end{bmatrix}$$

and where $R(t, t + h_1) = R(t, t + 1) = r_t$ and $h_1 < h_2 < \ldots < h_K$.

 \Box The absence of arbitrage conditions for the K yields in x_t imply :

(i)
$$C_1 = -e_1, D_1 = 0,$$

(ii) $C_{h_j} = -h_j e_{h_j}, D_{h_j} = 0, \forall j \in \{2, ..., K\},$
(11)

where e_{h_j} denotes the h_j^{th} element of the canonical basis in \mathbb{R}^{Kp} .

4.5.4 The *S*-Forward Dynamics

□ The *S*-forward dynamics of the *K*-dimensional factor x_{t+1} has an VAR(*p*) representation of the following type:

$$x_{t+1} = \nu_S + \Phi_1^* x_t + \ldots + \Phi_p^* x_{t+1-p} + \Sigma^* \xi_{t+1}, \qquad (12)$$

 \Box with

$$\nu_S = \nu^* - \Sigma^* \omega(t+1,S),$$

 \square and where $\xi_{t+1} \sim \mathcal{IIN}(0, I_K)$ under $\mathbb{Q}^{(S)}$.

 \Box This model can be represented in the following vectorial form :

$$X_{t+1} = \widetilde{\Phi}^* X_t + [\nu_S + \Sigma^* \xi_{t+1}] e_1,$$

where e_1 denotes the vector of size (Kp), with all entries equal to zero except for the first K elements which are all equal to one.

 \Box The one-period geometric zero-coupon bond return process is given by:

$$\rho(t+1, T) = r_t - \omega(t+1, T)' \xi_{t+1} - \frac{1}{2} \omega(t+1, T)' \omega(t+1, T) + \omega(t+1, T)' \omega(t+1, S),$$

 \Box with one-period risk premium given by :

$$\lambda_t^{\mathbb{Q}^{(S)}}(T) = \log E_t^{\mathbb{Q}^{(S)}} \exp \left[\rho(t+1, T)\right] - r_t = \omega(t+1, T)' \omega(t+1, S).$$

