Fixed Income and Credit Risk

Lecture 4

Professor Assistant Program
Fulvio Pegoraro Roberto Marfè MSc. Finance

Fall Semester 2012

UNIL | Université de Lausanne

Fixed Income and Credit Risk

Lecture 4 - Part I

Discrete-Time Univariate Gaussian

AR(p) Term Structure Models

Outline of Lecture 4 - Part I

4.1 Univariate Gaussian AR(1) Factor-Based Term Structure Models
4.1.1 Historical Dynamics
4.1.2 The Stochastic Discount Factor
4.1.3 The Risk Premium
4.1.4 The Affine Term Structure of Interest Rates
4.1.5 Excess Returns of Zero-Coupon Bonds
4.1.6 Risk-Neutral Dynamics
4.1.7 The Gaussian Short-Rate Model4.1.8 The S-Forward Dynamics
4.2 Univariate Gaussian $\operatorname{AR}(p)$ Factor-Based Term Structure Models
4.2.1 Historical Dynamics
4.2.2 The Stochastic Discount Factor
4.2.3 The Risk Premium
4.2.4 The Affine Term Structure of Interest Rates
4.2.5 Excess Returns of Zero-Coupon Bonds
4.2.6 Risk-Neutral Dynamics
4.2.7 The Gaussian $\operatorname{AR}(p)$ Short-Rate Model
4.2.8 The S-Forward Dynamics
4.2.9 Yield Curve Shapes

4.1 Univariate Gaussian AR(1) Factor-Based Term Structure Models

4.1.1 Historical Dynamics

\square We consider an economy, in a dynamic discrete-time setting, between dates 0 and T.
\square The new information in the economy at date t is denoted by x_{t} and the overall information at date t is $\underline{x}_{t}=\left(x_{t}, x_{t-1}, \ldots, x_{0}\right)$. It is the (common) information judged relevant by each investor to price assets.x_{t} is called a factor or a state vector, and it may be observable, partially observable or unobservable by the econometrician. The size of x_{t} is K.$x_{t}=$ observable
\rightarrow interest rates of different maturities, inflation rate, gross domestic product,$x_{t}=$ non observable
\rightarrow level, slope and curvature factors, market regimes (using regime-switching models), stochastic volatility, jumps (market crashes), ...$x_{t}=$ partially observable
$\rightarrow x_{t}=\left(x_{1, t}, x_{2, t}\right)^{\prime}$ where $x_{1, t}$ is observable and $x_{2, t}$ is not.
\square
The historical dynamics of x_{t} is defined by the joint distribution of \underline{x}_{T}, denoted by \mathbb{P}, or by the conditional probability density function (p.d.f.):

$$
f_{t}\left(x_{t+1} \mid \underline{x}_{t}\right)
$$or by the conditional Laplace transform (L.T.):

$$
\varphi_{t}\left(u \mid \underline{x}_{t}\right)=\varphi_{t}(u)=E\left[\exp \left(u^{\prime} x_{t+1}\right) \mid \underline{x}_{t}\right]=E_{t}\left[\exp \left(u^{\prime} x_{t+1}\right)\right]
$$

which is assumed to be defined in an open convex set of \mathbb{R}^{K} (containing zero).We also introduce the conditional Log-Laplace transform:

$$
\psi_{t}\left(u \mid \underline{x}_{t}\right)=\psi_{t}(u)=\log \left[\varphi_{t}\left(u \mid \underline{x}_{t}\right)\right]
$$

\square
Let us assume that $K=1$ and that the (non observable) factor x_{t+1} is a Gaussian
AR(1) process of the following type:

$$
x_{t+1}=\nu+\varphi x_{t}+\sigma \varepsilon_{t+1}
$$

where ε_{t+1} is a Gaussian white noise with $\mathcal{N}(0,1)$ distribution.
$\square E_{t}\left[x_{t+1}\right]=\nu+\varphi x_{t}$ and $V_{t}\left[x_{t+1}\right]=\sigma^{2}, \Rightarrow x_{t+1} \mid x_{t} \sim N\left(\nu+\varphi x_{t}, \sigma^{2}\right)$
and $x_{t+k \mid t}^{e}:=E_{t}\left[x_{t+k}\right]=\left(1+\varphi+\ldots+\varphi^{k-1}\right) \nu+\varphi^{k} x_{t} \quad($ under $\mathbb{P})$.
\square Under stationarity (i.e., $|\varphi|<1$), we have $E\left[x_{t}\right]=\frac{\nu}{1-\varphi}$ and $V\left[x_{t}\right]=\frac{\sigma^{2}}{1-\varphi^{2}}$,
$\Rightarrow x_{t} \sim N\left(\frac{\nu}{1-\varphi}, \frac{\sigma^{2}}{1-\varphi^{2}}\right)$, with $\lim _{k \rightarrow+\infty} E_{t}\left[x_{t+k}\right]=E\left[x_{t}\right]$ (under \mathbb{P}).Let us remember that the Laplace transform of a scalar Gaussian random variable $Y \sim N\left(\mu, \omega^{2}\right)$ is:

$$
\varphi(u)=E[\exp (u Y)]=\exp \left(u \mu+\frac{1}{2} u^{2} \omega^{2}\right)
$$This means that:

$$
\varphi_{t}\left(u \mid \underline{x}_{t}\right)=\varphi_{t}(u)=\exp \left[u\left(\nu+\varphi x_{t}\right)+\frac{1}{2} u^{2} \sigma^{2}\right]
$$and

$$
E\left[\exp \left(u x_{t}\right)\right]=\exp \left[u\left(\frac{\nu}{1-\varphi}\right)+\frac{1}{2} u^{2} \frac{\sigma^{2}}{1-\varphi^{2}}\right]
$$

4.1.2 The Stochastic Discount Factor

\square We price assets (ZCBs in our case!) following the no-arbitrage principle.
\square We are in a incomplete market setting and therefore, under $A A O$, we have an infinitely many positive SDFs.The development of the zero-coupon bond (no arbitrage) pricing model is characterized:

- after the historical distribution assumption (presented above),
- by the parametric specification of a positive stochastic discount factor (SDF)
$M_{t, t+1}$, for the period $(t, t+1)$.

The price $y(t)$ at t of a financial asset (basic asset, derivative, ...) paying $y(T)$ at T is:

$$
y(t)=E\left[M_{t, t+1} \cdot \ldots \cdot M_{T-1, T} y(T) \mid \underline{x}_{t}\right]=E_{t}\left[M_{t, T} y(T)\right]
$$

\square We choose a SDF which is exponential-affine in the state variable x_{t+1}, that is (equivalently), in its noise ε_{t+1} :

$$
M_{t, t+1}=\exp \left[-\beta-\alpha x_{t}+\Gamma_{t} \varepsilon_{t+1}-\frac{1}{2} \Gamma_{t}^{2}\right]:
$$

- the coefficients α and β are path independent (constant!);
$-\Gamma_{t}=\Gamma\left(x_{t}\right)=\left(\gamma_{o}+\gamma x_{t}\right)$ is a stochastic risk correction coefficient, also called Market Price of Factor Risk [see following sections].Now, the absence of arbitrage restriction on the ZCB with unitary residual maturity requires:

$$
E_{t}\left(M_{t, t+1}\right)=\exp \left(-r_{t}\right),
$$

where r_{t} is the (predetermined) short-term interest rate between t and $t+1$.This condition implies the relation $r_{t}=\beta+\alpha x_{t}$.This means that, under the absence of arbitrage opportunities, the SDF can be written as:

$$
M_{t, t+1}=\exp \left[-r_{t}+\Gamma_{t} \varepsilon_{t+1}-\frac{1}{2} \Gamma_{t}^{2}\right]=\exp \left(-r_{t}\right) \frac{d \mathbb{Q}_{t, t+1}}{d \mathbb{P}_{t, t+1}} .
$$

4.1.3 The Risk Premium

In order to give an interpretation of the risk-correction coefficient Γ_{t}, we consider the following definition of risk premium [see also Dai, Singleton and Yang (2007, RFS)]:Definition 1 : If we denote by P_{t} the price at time t of a given asset, its risk premium between t and $t+1$ is:

$$
\lambda_{t}=\log E_{t}\left(\frac{P_{t+1}}{P_{t}}\right)-r_{t}=\log E_{t} \exp \left(y_{t+1}\right)-r_{t}
$$

where $y_{t+1}=\log \left(P_{t+1} / P_{t}\right)$ denotes the one-period geometric return of the asset.We can interpret λ_{t} as the excess growth rate of the expected price with respect to the present price.Now, starting from this definition of the risk premium we obtain interpretations of the function Γ_{t}, appearing in the SDF, by means of the following example.
\square Example : If we consider an asset providing the payoff $\exp \left(-b x_{t+1}\right)$ at $t+1$, its price in t is given by:

$$
\begin{aligned}
P_{t} & =E_{t}\left[M_{t, t+1} P_{t+1}\right]=E_{t}\left[\exp \left(-r_{t}-\frac{1}{2} \Gamma_{t}^{2}+\left(\Gamma_{t}-b \sigma\right) \varepsilon_{t+1}-b\left(\nu+\varphi x_{t}\right)\right)\right] \\
& =\exp \left[-r_{t}-b\left(\nu+\varphi x_{t}\right)-b \sigma \Gamma_{t}+\frac{1}{2}(b \sigma)^{2}\right]
\end{aligned}
$$

\square
and

$$
\begin{aligned}
E_{t} P_{t+1} & =E_{t}\left[\exp \left(-b x_{t+1}\right)\right]=\exp \left[-b\left(\nu+\varphi x_{t}\right)\right] E_{t}\left\{\exp \left[-b \sigma \varepsilon_{t+1}\right]\right\} \\
& =\exp \left[-b\left(\nu+\varphi x_{t}\right)+\frac{1}{2}(b \sigma)^{2}\right]
\end{aligned}
$$Finally, the risk premium is:

$$
\lambda_{t}=b \sigma \Gamma_{t}
$$

\square Therefore, b, Γ_{t} and σ can be seen respectively as a risk sensitivity of the asset, a risk price and a risk measure.

4.1.4 The Affine Term Structure of Interest Rates

\square With the specification of the SDF, we determine the price of a zero-coupon bond in the following way:

$$
B(t, t+h)=E_{t}\left[M_{t, t+1} \cdot \ldots \cdot M_{t+h-1, t+h}\right]
$$

where $B(t, t+h)$ denotes the price at time t for a ZCB with residual maturity h.
\square Proposition 1 : The price at date t of the zero-coupon bond with residual maturity h is:

$$
B(t, t+h)=\exp \left(c_{h} x_{t}+d_{h}\right), \quad h \geq 1
$$

\square where c_{h} and d_{h} satisfies the recursive equations:

$$
\left\{\begin{array}{l}
c_{h}=-\alpha+\varphi^{*} c_{h-1} \\
d_{h}=-\beta+c_{h-1} \nu^{*}+\frac{1}{2} c_{h-1}^{2} \sigma^{2}+d_{h-1}
\end{array}\right.
$$

with $\varphi^{*}=(\varphi+\sigma \gamma), \nu^{*}=\left(\nu+\gamma_{o} \sigma\right)$ [keep in mind these parameters].
\square The initial conditions of the recursive (difference) equations are:

- at $h=0$ we have $B(t, t)=1$, implying the conditions $c_{0}=0$ and $d_{0}=0$.
- or, at $h=1$ we have $B(t, t+1)=\exp \left(-r_{t}\right)$, implying the conditions $c_{1}=-\alpha$ and $d_{1}=-\beta$.Proof of Proposition 1 : given that $M_{t, t+1}$ is exponential-affine in ε_{t+1} (i.e. $\left.x_{t+1}\right)$ and that the conditional Laplace transform of x_{t+1} is exponential-affine in the conditioning variable $\left(x_{t}\right)$ we suggest that the $Z C B$ pricing formula at date t be an exponential-affine function of x_{t} and then "we check if it works".
\square We proceed in the following way: a) we suggest $B(t, t+h)=\exp \left(c_{h} x_{t}+d_{h}\right)$ and we (equivalently) rewrite the pricing formula in terms of the payoff $B(t+1, t+h)=$

$$
\begin{aligned}
& \exp \left(c_{h-1} x_{t+1}+d_{h-1}\right) \\
& B(t, t+h)=\exp \left(c_{h} x_{t}+d_{h}\right) \\
&=E_{t}\left[M_{t, t+1} \cdots M_{t+H-1, t+H}\right] \\
&=E_{t}\left[M_{t, t+1} B(t+1, t+h)\right] \\
&=E_{t}\left[\exp \left(-\beta-\alpha x_{t}+\Gamma_{t} \varepsilon_{t+1}-\frac{1}{2} \Gamma_{t}^{2}\right) \exp \left(c_{h-1} x_{t+1}+d_{h-1}\right)\right]
\end{aligned}
$$

$\square b$) we do the algebra (calculating the conditional Laplace transform) obtaining:

$$
\begin{aligned}
& B(t, t+h) \\
= & \exp \left(c_{h} x_{t}+d_{h}\right) \\
= & \exp \left[-\beta-\alpha x_{t}-\frac{1}{2} \Gamma_{t}^{2}+d_{h-1}\right] \times E_{t}\left[\exp \left(\Gamma_{t} \varepsilon_{t+1}+c_{h-1} x_{t+1}\right)\right] \\
= & \left.\exp \left[-\beta-\alpha x_{t}-\frac{1}{2} \Gamma_{t}^{2}+d_{h-1}+c_{h-1}^{\prime}\left(\varphi x_{t}+\nu\right)\right] \times E_{t}\left[\exp \left(\Gamma_{t}+\sigma c_{h-1}\right) \varepsilon_{t+1}\right)\right] \\
= & \exp \left[\left(-\alpha+\varphi c_{h-1}+c_{h-1} \sigma \gamma\right) x_{t}+\left(-\beta+c_{h-1} \nu+\frac{1}{2} c_{h-1}^{2} \sigma^{2}+\gamma_{o} c_{h-1} \sigma+d_{h-1}\right)\right]
\end{aligned}
$$

\square c) and by identifying the coefficients we find the recursive relation presented in Proposition 1.
\square The ZCB price at date t is an exponential-affine function of the factor $\left(x_{t}\right)$ at the date $t \rightarrow$ it is function ONLY of the information at time t.
\square Corollary 1 : The yields to maturity (continuously compounded spot rates) associated to the ZCB pricing formula are :

$$
\begin{aligned}
R(t, t+h) & =-\frac{1}{h} \log B(t, t+h) \\
& =-\frac{c_{h}}{h} x_{t}-\frac{d_{h}}{h}, \quad h \geq 1
\end{aligned}
$$

and they are affine functions of the factor x_{t}.
\square For a given t and with h varying, $R(t, t+h)$ is the so-called affine term structure of interest rates.For that reason the model is called Affine Term Structure Model (ATSM).Given that the factor x_{t} is described by a discrete-time Gaussian stochastic process (the $A R(1)$ process), then we talk about Gaussian Discrete-Time ATSM.x_{t} is a scalar process : Univariate Gaussian ATSM.

4.1.5 Excess Returns of Zero-Coupon Bonds

\square We have the following specification for the zero-coupon bond return process.
\square Proposition 2 : Under the absence of arbitrage opportunity, and for a fixed maturity T, the one-period geometric zero-coupon bond return process $\rho=$ [$\rho(t, T), 0 \leq t \leq T]$, where $\rho(t+1, T)=\log [B(t+1, T)]-\log [B(t, T)]$, is given by:

$$
\rho(t+1, T)=r_{t}-\frac{1}{2} \omega(t+1, T)^{2}+\omega(t+1, T) \Gamma_{t}-\omega(t+1, T) \varepsilon_{t+1}
$$

where $\omega(t+1, T)=-\left(\sigma c_{T-t-1}\right)$ [Proof: exercise].This means that the process ρ is such that:

$$
\begin{aligned}
& \rho(t+1, T) \mid \underline{x_{t}} \sim N\left[\mu(t+1, T), \omega(t+1, T)^{2}\right] \\
& \text { where } \mu(t+1, T)=r_{t}-\frac{1}{2} \omega(t+1, T)^{2}+\omega(t+1, T) \Gamma_{t} \\
& \text { and } \omega(t+1, T)^{2}=\left(\sigma c_{T-t-1}\right)^{2}
\end{aligned}
$$

\square The associated risk premium between t and $t+1$, denoted by $\lambda_{t}(T)$, is:

$$
\lambda_{t}(T)=\log E_{t} \exp [\rho(t+1, T)]-r_{t}=\omega(t+1, T) \Gamma_{t}
$$

$\square \Gamma_{t}=\left(\gamma_{o}+\gamma x_{t}\right)$ plays (for any T) the role of a risk premium per unit of "risk" $\omega(t+1, T)$.In particular, for a fixed $\gamma \neq 0$, the variability of $\lambda_{t}(T)$ is driven by x_{t}.If we assume $\gamma=0$ (i. e., $\Gamma_{t}=\gamma_{o}$), the risk correction coefficient and the risk premium of the zero-coupon bond become constants.
\square Also note that, if $T=t+2$ and $x_{t}=r_{t}$, we have $\omega(t+1, T)=\sigma$ and we get the result of the example presented in Section 4.1 .3 for $b=1$.
\square We will see during the next Lecture that this property of the excess bond return process gives the opportunity to easily estimate the model, and in particular $\left(\gamma_{o}, \gamma\right)$.

4.1.6 Risk-Neutral Dynamics

In the previous sections we have presented the Gaussian AR(1) Factor-BasedTerm Structure Model under the historical probability \mathbb{P}.
\square Under the absence of arbitrage opportunity, there exist a probability $\mathbb{Q} \sim \mathbb{P}$ under which asset prices, evaluated with respect to some numeraire N_{t}, are martingales:

$$
\frac{y(t)}{N_{t}}=E_{t}^{\mathbb{Q}}\left[\frac{y(t+1)}{N_{t+1}}\right]
$$

$\square \mathbb{Q}$ is be the probability (equivalent to \mathbb{P}) defined by the sequence of conditional densities:

$$
\frac{d \mathbb{Q}_{t, t+1}}{d \mathbb{P}_{t, t+1}}=\frac{N_{t+1} M_{t, t+1}}{N_{t}}>0, \quad E_{t}^{\mathbb{P}}\left[\frac{d \mathbb{Q}_{t, t+1}}{d \mathbb{P}_{t, t+1}}\right]=1, t \in\{0, \ldots, T-1\} .
$$

\square The most used choices of numeraire are the money-market account (we are going to use) and the ZCB choice (presented in one of the following sections).

If we consider as numeraire the money-market account $N_{t}=\exp \left(r_{0}+\ldots+\right.$ $\left.r_{t-1}\right)=A_{0, t}$, where $\left(A_{0, t}\right)^{-1}=E_{0}\left(M_{0,1}\right) \cdots E_{t-1}\left(M_{t-1, t}\right)$, the associated equivalent probability \mathbb{Q} has a one-period conditional density, with respect to \mathbb{P}, given by :

$$
\frac{d \mathbb{Q}_{t, t+1}}{d \mathbb{P}_{t, t+1}}=\frac{A_{0, t+1} M_{t, t+1}}{A_{0, t}}=\frac{M_{t, t+1}}{E_{t}\left(M_{t, t+1}\right)}=e^{r_{t}} M_{t, t+1} .
$$

and it is called risk-neutral probability measure.This means that the pricing formula $y(t)=E_{t}\left[M_{t, t+1} y(t+1)\right]$ can be written:

$$
\begin{aligned}
y(t) & =E_{t}\left[\frac{M_{t, t+1}}{E_{t}\left[M_{t, t+1}\right]} E_{t}\left[M_{t, t+1}\right] y(t+1)\right] \\
& =E_{t}^{\mathbb{Q}}\left[\exp \left(-r_{t}\right) y(t+1)\right]
\end{aligned}
$$In a general ($T-t$)-period horizon, the conditional (to x_{t}) density of the riskneutral probability \mathbb{Q} with respect to the historical probability \mathbb{P} is given by:

$$
\begin{aligned}
\frac{d \mathbb{Q}_{t, T}}{d \mathbb{P}_{t, T}} & =\frac{M_{t, t+1} \cdot \ldots \cdot M_{T-1, T}}{E_{t}\left(M_{t, t+1}\right) \cdot \ldots \cdot E_{T-1}\left(M_{T-1, T}\right)} \\
& =\exp \left(r_{t}+\ldots+r_{T-1}\right) M_{t, T}
\end{aligned}
$$This means that, for any payoff $y(T)$ at T, we have :

$$
y(t)=E_{t}^{\mathbb{Q}}\left[\exp \left(-r_{t}-\ldots-r_{T-1}\right) y(T)\right]
$$

and $y(t) / A_{0, t}$ is a \mathbb{Q}-martingale.The one-period transition from the historical world to the risk-neutral one is given, in our model, by the conditional density function :

$$
\frac{M_{t, t+1}}{E_{t}\left(M_{t, t+1}\right)}=\exp \left[\Gamma_{t} \varepsilon_{t+1}-\frac{1}{2} \Gamma_{t}^{2}\right]
$$

\square Moreover, for any asset, the price P_{t} at t is equal to $\exp \left(-r_{t}\right) E_{t}^{\mathbb{Q}}\left(P_{t+1}\right)$ and, therefore, the risk premium λ_{t} presented in Definition 1 is equal to:

$$
\lambda_{t}=\log E_{t}\left(P_{t+1}\right)-\log E_{t}^{\mathbb{Q}}\left(P_{t+1}\right)
$$The risk-neutral Laplace transform of x_{t+1}, conditionally to x_{t}, is given by:

$$
\begin{aligned}
& E_{t}^{\mathbb{Q}}\left[\exp \left(u x_{t+1}\right)\right]=E_{t}\left[\frac{M_{t, t+1}}{E_{t}\left(M_{t, t+1}\right)} \exp \left(u x_{t+1}\right)\right] \\
= & E_{t}\left[\exp \left(\left(\gamma_{o}+\gamma x_{t}\right) \varepsilon_{t+1}-\frac{1}{2}\left(\gamma_{o}+\gamma x_{t}\right)^{2}+u x_{t+1}\right)\right] \\
= & \exp \left[u\left(\nu+\varphi x_{t}\right)-\frac{1}{2}\left(\gamma_{o}+\gamma x_{t}\right)^{2}\right] \times E_{t}\left[\exp \left(\gamma_{o}+\gamma x_{t}+u \sigma\right) \varepsilon_{t+1}\right] \\
= & \exp \left[u\left[\left(\nu+\sigma \gamma_{o}\right)+(\varphi+\sigma \gamma) x_{t}\right]+\frac{1}{2} u^{2} \sigma^{2}\right] \\
= & \exp \left[u\left(\nu^{*}+\varphi^{*} x_{t}\right)+\frac{1}{2} u^{2} \sigma^{2}\right],
\end{aligned}
$$Proposition 3 : Under the risk-neutral probability \mathbb{Q}, x_{t+1} is an $\operatorname{AR}(1)$ process

of the following type:

$$
x_{t+1}=\nu^{*}+\varphi^{*} x_{t}+\sigma^{*} \eta_{t+1}
$$

\square
with

$$
\nu^{*}=\left(\nu+\sigma \gamma_{o}\right), \varphi^{*}=(\varphi+\sigma \gamma), \sigma^{*}=\sigma
$$

and where $\eta_{t+1} \stackrel{\mathbb{Q}}{\sim} \mathcal{I} \mathcal{I N}(0,1)$. Note that $\varepsilon_{t+1}=\eta_{t+1}+\Gamma_{t}$.If $\Gamma_{t}=\gamma_{o}$ (constant market price of risk), only the constant term changes.

If $\Gamma_{t}=0$, then $\left(x_{t}\right)$ has the same distribution under \mathbb{P} and \mathbb{Q}.
\square Indeed, if $\Gamma_{t}=0$ we have $M_{t, t+1}=\exp \left(-r_{t}\right)$ and any payoff is discounted under \mathbb{P} by the risk-free rate:

$$
B(t, t+h)=E_{t}\left[\exp \left(-r_{t}-\ldots-r_{t+h-1}\right)\right], \text { with } r_{t}=\beta+\alpha x_{t}
$$

\square Meaning \rightarrow assuming $M_{t, t+1}=\exp \left(-r_{t}\right)$ implies that we do not consider the factor $\left(x_{t}\right)$ as a source of risk, additional to (different from) $\left(r_{t}\right)$, affecting the ZCB price process.Indeed, in that case we have $\lambda_{t}(T)=\log E_{t} \exp [\rho(t+1, T)]-r_{t}=0$.Proposition 4 : In the risk-neutral framework, for a fixed maturity T, the oneperiod geometric zero-coupon bond return process satisfies the relation:

$$
\rho(t+1, T)=r_{t}-\frac{1}{2} \omega(t+1, T)^{2}-\omega(t+1, T) \eta_{t+1}
$$with a risk premium equal to :

$$
\lambda_{t}^{\mathbb{Q}}(T)=\log E_{t}^{\mathbb{Q}} \exp [\rho(t+1, T)]-r_{t}=0
$$

4.1.7 The Gaussian short-rate model

In what we have presented above, the factor x_{t} was latent. In the term structure literature several models are specified assuming $x_{t}=r_{t}$.\square The shape and the dynamics of the (ENTIRE!) yield curve is driven (ONLY!) by the short-rate process.
\square It is convenient to have observable factors: we can specify the historical dynamics of the factor starting from the observed stylized facts (autocorrelation, marginal moments, mean-reversion, stationarity, ...) on the short-rate.
\square We assume that the factor $x_{t+1}=r_{t+1}$ is a Gaussian $\operatorname{AR}(1)$ process of the following type:

$$
r_{t+1}=\nu+\varphi r_{t}+\sigma \varepsilon_{t+1}
$$

\square we have the same SDF, but now the AAO condition $E_{t}\left(M_{t, t+1}\right)=\exp \left(-r_{t}\right)$ implies $\beta=0$ and $\alpha=1$. We have to guarantee that the theoretical formula $R(t, h)$ generates, when $h=1$, exactly the short rate process we have assumed under \mathbb{P}.Clearly, under \mathbb{Q} we have:

$$
r_{t+1}=\nu^{*}+\varphi^{*} r_{t}+\sigma \eta_{t+1}
$$

\square It is the discrete-time equivalent of the continuous-time Vasicek (1977) model.
\square An interesting interpretation of Γ_{t} stands out when we write $R(t, h)$ for $h=2$. It is easy to verify that:

$$
R(t, t+2)=\frac{1}{2}\left[r_{t}+E_{t}\left(r_{t+1}\right)+\sigma \Gamma_{t}-\frac{1}{2} \sigma^{2}\right]
$$

\square The term $\frac{1}{2}\left[r_{t}+E_{t}\left(r_{t+1}\right)\right]$ is the average sequence of future short rates (\rightarrow Expectation Hypothesis Theory! $)$, while $\left(\sigma^{2} / 2\right)$ is a Jensen inequality term $(E[\exp (X)]$ $>\exp [E(X)])$.
\square The term $\frac{1}{2} \sigma \Gamma_{t}$ is the non-zero time-varying Term Premia: if $\Gamma_{t}=\gamma_{o}$ then TP is constant over time and depend only on the residual maturity (EH). If $\Gamma_{t}=0$, then TP $=0(P E H)$.

4.1.8 The S-Forward Dynamics

\square In many financial applications, a convenient numeraire is the zero-coupon bond whose maturity S is the same as the derivative product we would like to price.
\square More precisely, the equivalent martingale measure is determined in this case, for every date $t \in[0, S]$, by the numeraire:

$$
N_{t}=\frac{B(t, S)}{B(0, S)}
$$

and it is referred to as S-forward probability and denoted by $\mathbb{Q}^{(S)}$.
\square The one-period conditional (to $\underline{x_{t}}$) density of the S-forward probability $\mathbb{Q}^{(S)}$, with respect to the historical probability \mathbb{P}, is given by:

$$
\frac{d \mathbb{Q}_{t, t+1}^{(S)}}{d \mathbb{P}_{t, t+1}}=\frac{M_{t, t+1} B(t+1, S)}{B(t, S)}
$$while, the one-period conditional (again, to $\underline{x_{t}}$) density of the S-forward probability $\mathbb{Q}^{(S)}$ with respect to the risk-neutral probability \mathbb{Q}, is given by:

$$
\frac{d \mathbb{Q}_{t, t+1}^{(S)}}{d \mathbb{Q}_{t, t+1}}=\frac{d \mathbb{Q}_{t, t+1}^{(S)}}{d \mathbb{P}_{t, t+1}} \frac{d \mathbb{P}_{t, t+1}}{d \mathbb{Q}_{t, t+1}}=E_{t}\left(M_{t, t+1}\right) \frac{B(t+1, S)}{B(t, S)}=\exp \left(-r_{t}\right) \frac{B(t+1, S)}{B(t, S)}
$$

\square
Therefore, in a $(T-t)$-period horizon (where $T \leq S$), the S-forward probability $\mathbb{Q}^{(S)}$ has a (conditional to $\underline{x_{t}}$) joint density with respect to the risk-neutral probability \mathbb{Q} given by:

$$
\frac{d \mathbb{Q}_{t, T}^{(S)}}{d \mathbb{Q}_{t, T}}=\prod_{\tau=t}^{T-1} \exp \left(-r_{\tau}\right) \frac{B(\tau+1, S)}{B(\tau, S)}=\frac{B(T, S)}{B(t, S)} \exp \left(-r_{t}-\ldots-r_{T-1}\right),
$$

\square and the pricing formula of $y(T)$, for $S=T$, takes the following useful representation:

$$
\begin{aligned}
y(t) & \left.=E_{t}^{\mathbb{Q}}\left[\exp \left(-r_{t}-\ldots-r_{T-1}\right) y(T)\right)\right] \\
& =B(t, T) E_{t}^{\mathbb{Q}^{(T)}}[y(T)],
\end{aligned}
$$

in which the problem of derivative pricing reduces to calculating an expectation of the payoff $y(T)$.
\square
The S-forward dynamics of x_{t+1} has an $\operatorname{AR}(1)$ representation of the following type:

$$
x_{t+1}=\nu_{S}+\varphi^{*} x_{t}+\sigma^{*} \xi_{t+1}
$$

\square with

$$
\nu_{S}=\nu^{*}-\sigma^{*} \omega(t+1, S)
$$

\square and where $\xi_{t+1} \sim \mathcal{I I} \mathcal{I N}(0,1)$ under $\mathbb{Q}^{(S)}$ [Proof: exercise]. Observe that $\varepsilon_{t+1}=$ $\xi_{t+1}-\omega(t+1, S)+\Gamma_{t}$.
\square In the S-forward framework, the one-period geometric zero-coupon bond return process is described by the relation:

$$
\rho(t+1, T)=-\omega(t+1, T) \xi_{t+1}+r_{t}-\frac{1}{2} \omega(t+1, T)^{2}+\omega(t+1, T) \omega(t+1, S)
$$with a one-period risk premium given by :

$$
\lambda_{t}^{\mathbb{Q}^{(s)}}(T)=\log E_{t}^{\mathbb{Q}^{(s)}} \exp [\rho(t+1, T)]-r_{t}=\omega(t+1, T) \omega(t+1, S)
$$

[Proof : exercise].
\square Consequently, under the T-forward probability, the one-period risk premium per unit of $\omega(t+1, T)$ is given by the $\omega(t+1, T)$ itself.

4.2 Univariate Gaussian $\operatorname{AR}(p)$ Factor-Based Term Structure Models

4.2.1 Historical Dynamics

\square We assume that the (scalar) exogenous factor x_{t+1} characterizing the specification of the term structure is an $\operatorname{AR}(p)$ process of the following type:

$$
\begin{aligned}
x_{t+1} & =\nu+\varphi_{1} x_{t}+\ldots+\varphi_{p} x_{t+1-p}+\sigma \varepsilon_{t+1} \\
& =\nu+\varphi^{\prime} X_{t}+\sigma \varepsilon_{t+1},
\end{aligned}
$$where ε_{t+1} is a gaussian white noise with $\mathcal{N}(0,1)$ distribution.We have: $\varphi=\left[\varphi_{1}, \ldots, \varphi_{p}\right]^{\prime}, X_{t}=\left[x_{t}, \ldots, x_{t+1-p}\right]^{\prime}$, and where $\sigma>0, \nu$ and φ_{i}, for $i \in\{1, \ldots, p\}$, are scalar coefficients.

$\square E_{t}\left[x_{t+1}\right]=\nu+\varphi^{\prime} X_{t}$ and $V_{t}\left[x_{t+1}\right]=\sigma^{2} \Rightarrow x_{t+1} \mid x_{t} \sim N\left(\nu+\varphi^{\prime} X_{t}, \sigma^{2}\right)$ (under \mathbb{P}).
\square Under stationarity (i.e. the roots of the equation $1-\sum_{j=1}^{p} \varphi_{j} z^{j}=0$ all lie outside the unit circle), we have $E\left[x_{t}\right]=\frac{\nu}{1-\sum_{j=1}^{p} \varphi_{j}}=\mu_{x}$ and $V\left[x_{t}\right]=\sigma_{x}^{2}$ [see Hamilton (1994), Chapter 3],
$\Rightarrow x_{t} \sim N\left(\mu_{x}, \sigma_{x}^{2}\right)$ (under \mathbb{P}).
\square Forecasts can be recursively calculated in the following way:

$$
x_{t+k \mid t}^{e}:=E_{t}\left[x_{t+k}\right]=\nu+\varphi_{1} E_{t}\left[x_{t+k-1}\right]+\varphi_{2} E_{t}\left[x_{t+k-2}\right]+\ldots+\varphi_{p} E_{t}\left[x_{t+k-p}\right]
$$

starting from $E_{t}\left[x_{t+1}\right]=\nu+\varphi_{1} x_{t}+\varphi_{2} x_{t-1}+\ldots+\varphi_{p} x_{t-p+1}$.The conditional Laplace transform is given by:

$$
\varphi_{t}\left(u \mid \underline{x}_{t}\right)=\varphi_{t}(u)=\exp \left[u\left(\nu+\varphi^{\prime} X_{t}\right)+\frac{1}{2} u^{2} \sigma^{2}\right]
$$

\square and the marginal one is:

$$
E\left[\exp \left(u x_{t}\right)\right]=\exp \left[u \mu_{x}+\frac{1}{2} u^{2} \sigma_{x}^{2}\right] .
$$The model can also be represented in the following multivariate $A R(1)$ form :

$$
X_{t+1}=\tilde{\nu}+\Phi X_{t}+\sigma \tilde{\varepsilon}_{t+1}
$$

\square where $\tilde{\nu}=[\nu, 0, \ldots, 0]^{\prime}$ and $\tilde{\varepsilon}_{t+1}=\left[\varepsilon_{t+1}, 0, \ldots, 0\right]^{\prime}$ are p-dimensional vectors,and where

$$
\Phi=\left[\begin{array}{ccccc}
\varphi_{1} & \cdots & \cdots & \varphi_{p-1} & \varphi_{p} \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & & \ddots & \vdots & \vdots \\
0 & \cdots & \cdots & 1 & 0
\end{array}\right]
$$

is a $(p \times p)$-matrix.

4.2.2 Stochastic Discount Factor

\square We specify the following SDF:

$$
M_{t, t+1}=\exp \left[-\beta-\alpha^{\prime} X_{t}+\Gamma_{t} \varepsilon_{t+1}-\frac{1}{2} \Gamma_{t}^{2}\right],
$$

\square where the coefficients $\alpha=\left[\alpha_{1}, \ldots, \alpha_{p}\right]^{\prime}$ and β are path independent, and where

$$
\Gamma_{t}=\Gamma\left(X_{t}\right)=\left(\gamma_{o}+\gamma^{\prime} X_{t}\right)=\gamma_{o}+\gamma_{1} x_{t}+\ldots+\gamma_{p} x_{t-p+1} .
$$

\square The no-arbitrage restriction $E_{t}\left(M_{t, t+1}\right)=\exp \left(-r_{t}\right)$, implies the relation $r_{t}=$ $\beta+\alpha^{\prime} X_{t}$.

4.2.3 The Risk Premium

\square Given the definition of risk premium introduced in Lecture 3 (Part III):

$$
\lambda_{t}=\log E_{t}\left(\frac{P_{t+1}}{P_{t}}\right)-r_{t}=\log E_{t} \exp \left(y_{t+1}\right)-r_{t},
$$

\square and given the same payoff $\exp \left(-b x_{t+1}\right)$ at $t+1$, its price in t is given by:

$$
\begin{aligned}
P_{t} & =E_{t}\left[M_{t, t+1} P_{t+1}\right]=\exp \left[-r_{t}-b\left(\nu+\varphi^{\prime} X_{t}\right)-b \sigma \Gamma_{t}+\frac{1}{2}(b \sigma)^{2}\right] \\
E_{t} P_{t+1} & =E_{t}\left[\exp \left(-b x_{t+1}\right)\right]=\exp \left[-b\left(\nu+\varphi^{\prime} X_{t}\right)+\frac{1}{2}(b \sigma)^{2}\right]
\end{aligned}
$$

\square the risk premium is $\lambda_{t}=b \sigma \Gamma_{t}=b \sigma\left(\gamma_{o}+\gamma^{\prime} X_{t}\right)$. It is function of the p most recent lagged values of the factor x_{t+1}. The recent past (and not only the present value x_{t}) determine the risk premium level in t.

4.2.4 The Affine Term Structure of Interest Rates

The price at date t of the zero-coupon bond with time to maturity h is :$$
B(t, t+h)=\exp \left(c_{h}^{\prime} X_{t}+d_{h}\right), \quad h \geq 1,
$$

\square where c_{h} and d_{h} satisfies the recursive equations:

$$
\begin{aligned}
c_{h} & =-\alpha+\Phi^{\prime} c_{h-1}+c_{1, h-1} \sigma \gamma=-\alpha+\Phi^{*^{\prime}} c_{h-1} \\
d_{h} & =-\beta+c_{1, h-1}\left(\nu+\gamma_{o} \sigma\right)+\frac{1}{2} c_{1, h-1}^{2} \sigma^{2}+d_{h-1}
\end{aligned}
$$with :

$$
\Phi^{*}=\left[\begin{array}{ccccc}
\varphi_{1}+\sigma \gamma_{1} & \ldots & \ldots & \varphi_{p-1}+\sigma \gamma_{p-1} & \varphi_{p}+\sigma \gamma_{p} \\
1 & 0 & \ldots & 0 & 0 \\
0 & 1 & \ldots & 0 & 0 \\
\vdots & & \ddots & \vdots & \vdots \\
0 & \ldots & \cdots & 1 & 0
\end{array}\right]
$$

\square The initial conditions are $c_{0}=0, d_{0}=0$ (or $c_{1}=-\alpha, d_{1}=-\beta$); $c_{1, h}$ is the first component of the p-dimensional vector c_{h} [Proof : exercise].
\square The continuously compounded term structure of interest rates is given by:

$$
R(t, t+h)=-\frac{1}{h} \log B(t, t+h)=-\frac{c_{h}^{\prime}}{h} X_{t}-\frac{d_{h}}{h}, \quad h \geq 1
$$For a given date t, any yield $R(t, t+h)$ is an affine function of the factor X_{t}, that is of the p most recent lagged values of x_{t+1}.

4.2.5 Excess Returns of Zero-Coupon Bonds

\square Under no-arbitrage, and for a fixed maturity T, the one-period geometric zerocoupon bond return process $\rho=[\rho(t, T), 0 \leq t \leq T]$, where $\rho(t+1, T)=$ $\log [B(t+1, T)]-\log [B(t, T)]$, is given by:

$$
\rho(t+1, T)=r_{t}-\frac{1}{2} \omega(t+1, T)^{2}+\omega(t+1, T) \Gamma_{t}-\omega(t+1, T) \varepsilon_{t+1}
$$

where $\omega(t+1, T)=-\left(\sigma c_{1, T-t-1}\right)$ [Proof: exercise].This means that the process ρ is such that:

$$
\begin{aligned}
& \rho(t+1, T) \mid \underline{x_{t}} \sim N\left[\mu(t+1, T), \omega(t+1, T)^{2}\right] \\
& \text { where } \mu(t+1, T)=r_{t}-\frac{1}{2} \omega(t+1, T)^{2}+\omega(t+1, T) \Gamma_{t}, \\
& \text { and } \omega(t+1, T)^{2}=\left(\sigma c_{1, T-t-1}\right)^{2} .
\end{aligned}
$$

\square The associated risk premium between t and $t+1$, denoted by $\lambda_{t}(T)$, is:

$$
\lambda_{t}(T)=\log E_{t} \exp [\rho(t+1, T)]-r_{t}=\omega(t+1, T) \Gamma_{t}=\omega(t+1, T)\left(\gamma_{o}+\gamma^{\prime} X_{t}\right) .
$$

\square We note that $\Gamma_{t}=\left(\gamma_{o}+\gamma^{\prime} X_{t}\right)$ plays for any T the role of a risk premium per unit of "risk" $\omega(t+1, T)$.

In particular, the variability of $\lambda_{t}(T)$ is driven, for a fixed γ different from zero, by the p most recent lagged values of x_{t+1}.

4.2.6 Risk-Neutral Dynamics

\square The risk-neutral Laplace transform of x_{t+1}, conditionally to \underline{x}_{t}, is given by:

$$
\begin{aligned}
E_{t}^{\mathbb{Q}}\left[\exp \left(u x_{t+1}\right)\right] & =\exp \left[u\left(\nu+\varphi^{\prime} X_{t}\right)-\frac{1}{2}\left(\gamma_{o}+\gamma^{\prime} X_{t}\right)^{2}\right] E_{t}\left[\exp \left(\gamma_{o}+\gamma^{\prime} X_{t}+u \sigma\right) \varepsilon_{t+1}\right] \\
& =\exp \left[u\left[\left(\nu+\sigma \gamma_{o}\right)+(\varphi+\sigma \gamma)^{\prime} X_{t}\right]+\frac{1}{2} u^{2} \sigma^{2}\right],
\end{aligned}
$$

where $\varphi=\left[\varphi_{1}, \ldots, \varphi_{p}\right]^{\prime}$ [Proof : exercise]. Therefore, we get the following result.
\square Under the risk-neutral probability \mathbb{Q}, x_{t+1} is an $\operatorname{AR}(p)$ process of the following type:

$$
x_{t+1}=\nu^{*}+\varphi_{1}^{*} x_{t}+\ldots+\varphi_{p}^{*} x_{t+1-p}+\sigma^{*} \eta_{t+1}
$$with

$$
\begin{aligned}
\nu^{*} & =\left(\nu+\sigma \gamma_{o}\right), \varphi_{i}^{*}=\left(\varphi_{i}+\sigma \gamma_{i}\right) \quad \text { for } i \in\{1, \ldots, p\} \\
\sigma^{*} & =\sigma
\end{aligned}
$$

where $\eta_{t+1} \stackrel{\mathbb{Q}}{\sim} \mathcal{I} \mathcal{I N}(0,1)$. Note that $\varepsilon_{t+1}=\eta_{t+1}+\Gamma_{t}$.This model can be represented in the following vectorial form :

$$
X_{t+1}=\tilde{\nu}^{*}+\Phi^{*} X_{t}+\sigma^{*} \tilde{\eta}_{t+1}
$$

\square where $\tilde{\nu}^{*}=\left[\nu^{*}, 0, \ldots, 0\right]^{\prime}$ and $\tilde{\eta}_{t+1}=\left[\eta_{t+1}, 0, \ldots, 0\right]^{\prime}$ are p-dimensional vectors.

4.2.7 The Gaussian AR(p) short-rate model

\square We assume that the factor $x_{t+1}=r_{t+1}$ is a $\operatorname{Gaussian} \operatorname{AR}(p)$ process of the following type:

$$
r_{t+1}=\nu+\varphi_{1} r_{t}+\ldots+\varphi_{p} r_{t-p+1}+\sigma \varepsilon_{t+1}
$$

\square we have the same SDF, but now the AAO condition $E_{t}\left(M_{t, t+1}\right)=\exp \left(-r_{t}\right)$ implies $\beta=0$ and $\alpha=(1,0, \ldots, 0)^{\prime} \in \mathbb{R}^{p}$. We have to guarantee that the theoretical formula $R(t, t+h)$ generates, when $h=1$, exactly the short rate process we have assumed under \mathbb{P}.
\square Clearly, under \mathbb{Q} we have:

$$
r_{t+1}=\nu^{*}+\varphi_{1}^{*} r_{t}+\ldots+\varphi_{p}^{*} r_{t-p+1}+\sigma \eta_{t+1}
$$

\square It is the discrete-time "multiple lags" generalization of the continuous-time Vasicek (1977) model.

4.2.8 The S-Forward Dynamics

\square The S-forward dynamics of x_{t+1} has an $\operatorname{AR}(p)$ representation of the following type:

$$
x_{t+1}=\nu_{S}+\varphi_{1}^{*} x_{t}+\ldots+\varphi_{p}^{*} x_{t+1-p}+\sigma^{*} \xi_{t+1}
$$with

$$
\nu_{S}=\nu^{*}-\sigma^{*} \omega(t+1, S),
$$

\square and where $\xi_{t+1} \sim \operatorname{IIN}(0,1)$ under \mathbb{Q}_{S} [Proof : exercise]. Observe that $\varepsilon_{t+1}=$ $\xi_{t+1}-\omega(t+1, S)+\Gamma_{t}$, where $\Gamma_{t}=\gamma_{o}+\gamma^{\prime} X_{t}$.
\square In the S-forward framework, the one-period geometric zero-coupon bond return process is described by the relation:

$$
\rho(t+1, T)=-\omega(t+1, T) \xi_{t+1}+r_{t}-\frac{1}{2} \omega(t+1, T)^{2}+\omega(t+1, T) \omega(t+1, S)
$$with a one-period risk premium given by :

$$
\lambda_{t}^{\mathbb{Q}^{(s)}}(T)=\log E_{t}^{\mathbb{Q}^{(s)}} \exp [\rho(t+1, T)]-r_{t}=\omega(t+1, T) \omega(t+1, S)
$$

[Proof : exercise].
\square Consequently, under the T-forward probability, the one-period risk premium per unit of $\omega(t+1, T)$ is given by the $\omega(t+1, T)$ itself.

4.2.9 Yield Curve Shapes

\square Which kind of yield curve shapes are we able to generate thanks to the introduction of lagged factor values ?
\square Compared to the Gaussian $\operatorname{AR}(1)$ case, are we able to generate yield curves closer to the observed ones ?
\square Let us consider (from CRSP) a data set on the U. S. term structure of interest rates (treasury zero-coupon bond yields), covering the period from June 1964 to December 1995. We have 379 monthly observations for each of the nine maturities: 1, 3, 6 and 9 months and 1, 2, 3, 4 and 5 years.

Table 1: Summary Statistics on U. S. Monthly Yields from June 1964 to December 1995.
$\operatorname{ACF}(k)$ indicates the empirical autocorrelation between yields $R(t, h)$ and $R(t-k, h)$, with h and k expressed on a monthly basis.

Maturity	$1-\mathrm{m}$	3-m	$6-\mathrm{m}$	$9-\mathrm{m}$	$1-\mathrm{yr}$	$2-\mathrm{yr}$	$3-\mathrm{yr}$	$4-\mathrm{yr}$	$5-\mathrm{yr}$
Mean	0.0645	0.0672	0.0694	0.0709	0.0713	0.0734	0.0750	0.0762	0.0769
Std. Dev.	0.0265	0.0271	0.0270	0.0269	0.0260	0.0252	0.0244	0.0240	0.0237
Skewness	1.2111	1.2118	1.1518	1.1013	1.0307	0.9778	0.9615	0.9263	0.8791
Kurtosis	4.5902	4.5237	4.3147	4.1605	3.9098	3.6612	3.5897	3.5063	3.3531
Minimum	0.0265	0.0277	0.0287	0.0299	0.0311	0.0366	0.0387	0.0397	0.0398
Maximum	0.1640	0.1612	0.1655	0.1644	0.1581	0.1564	0.1556	0.1582	0.1500
ACF(1)	0.9587	0.9731	0.9747	0.9745	0.9727	0.9780	0.9797	0.9802	0.9822
ACF(5)	0.8288	0.8531	0.8579	0.8588	0.8604	0.8783	0.8915	0.8986	0.9053
ACF(10)	0.7278	0.7590	0.7691	0.7699	0.7683	0.7885	0.8021	0.8075	0.8212
ACF(20)	0.4303	0.4631	0.4880	0.4996	0.5156	0.5742	0.6051	0.6193	0.6431
ACF(30)	0.2548	0.2682	0.3016	0.3213	0.3518	0.4358	0.4725	0.4994	0.5187
ACF(40)	0.1362	0.1415	0.1677	0.1853	0.2160	0.3056	0.3427	0.3780	0.3961

- upward sloping
- and the yields with larger standard deviation, positive skewness and kurtosis are those with shorter maturities.
- Moreover, yields are highly autocorrelated with a persistence which is increasing with the time to maturity.
\square Let us take as factor the 1-month yield : $r_{t}=R(t, t+1$ month $)$Figures $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} : examples of observed yield curves in the data base.
\qquad Figures from 1 to 4: yield curves generated by a Gaussian AR(1)ATSM.
\hookrightarrow Shapes can be only monotone increasing/decreasing, flat or with hump.Figures from 5 to 8: yield curves generated by a Gaussian AR(2) ATSM.
\hookrightarrow Richer but not really realistic shapes.

Figures from 9 to 12: yield curves generated by a Gaussian AR(3) ATSM.
\hookrightarrow Richer and more realistic shapes (two humps).

FIGURE 1 - Goussion AR(1) model;
phi_stor $=0.99 . r=0.003$; sigma^2 $2=0.00000039$;
nu_star $=0.00005$ (bottom curve) to 0.00030 (top curve)

FIGURE 3 - Goussion AR(1) model:
phi $=0.95$; phi_stor $=0.87$ (bottom curve) to 0.99 (top curve):

FIGURE 2 - Gaussion AR(1) model: phi_star $=0.99 . r=0.003$; sigma ${ }^{2} 2=0.000008$;
nu_stor $=0.00010$ (bottom curve) to 0.00015 (top curve)

FIGURE 4-Gaussion AR(1) model:
phi_star $=0.99, \mathrm{r}=0.003$; nu_star $=0.00007$
sigma-2 $=0.0000004$ (top curve) to 0.0000024 (bottom curve):

Nevertheless, we have to keep in mind that the shapes we have seen have been generated by chosen (and not estimated !) parameter values !

If we want to realistically verify the ability of Gaussian $\operatorname{AR}(p)$ ATSMs models to generate yield curves closer to the observed one, we have to:
a) first, estimate the parameters of the model
b) second, generate the yield curves by means of the yield curve formula, fixing parameter values to their estimated values.
c) third, compare them with other possible (competing) yield curve models: which model fit the observed yield curves better (i.e. smallest pricing errors) ?

Using estimated parametersFigures from 1 to 4 (slide 30) : $A R(1)$ model-implied yield curve shapes.Figures from 1 to 6 (slide 31): $A R(3)$ model-implied yield curve shapes.Figures from 1 to 6 (slide 32): $A R(4)$ model-implied yield curve shapes.Figures from 1 to 6 (slide 33): AR(5) model-implied yield curve shapes.
\square Figures from 1 to 6 (slide 34): AR(6) model-implied yield curve shapes.

Fixed Income and Credit Risk Lecture 4 - Part II

Discrete-Time Bivariate Gaussian

VAR(1) Term Structure Models

Outline of Lecture 4 - Part II

4.3 Bivariate Gaussian VAR(1) Factor-Based Term Structure Models
4.3.1 Historical Dynamics
4.3.2 The Stochastic Discount Factor
4.3.3 The Risk Premium
4.3.4 The Affine Term Structure of Interest Rates
4.3.5 Excess Returns of Zero-Coupon Bonds
4.3.6 The Bivariate Gaussian VAR(1) Observable Factor-Based Model

4.3 Gaussian VAR(1) Factor-Based Term Structure Models

4.3.1 Historical Dynamics

We consider our discrete-time economy between dates 0 and T.x_{t} is our factor or a state vector, and it may be observable, partially observable or unobservable by the econometrician.The Gaussian $\operatorname{AR}(p)$ ATSM is (at estimated parameters) not able to completely explain the variability over time and maturities of the observed yield curves \Rightarrow we need more information, i.e. more factors!The size of $x_{t}=\left(x_{1, t}, x_{2, t}\right)^{\prime}$ is now assumed to be $K=2$.\square
The historical dynamics of x_{t} is defined by the joint distribution of $\underline{x}_{T}=$ $\left(x_{0}, \ldots, x_{T}\right)$, denoted by \mathbb{P}, or by the conditional probability density function (p.d.f.):

$$
f_{t}\left(x_{1, t+1}, x_{2, t+1} \mid \underline{x}_{t}\right)
$$or by the conditional Laplace transform (L.T.):

$\varphi_{t}\left(u \mid \underline{x}_{t}\right)=E\left[\exp \left(u_{1} x_{1, t+1}+u_{2} x_{2, t+1}\right) \mid \underline{x}_{t}\right]=E\left[\exp \left(u^{\prime} x_{t+1}\right) \mid \underline{x}_{t}\right]=E_{t}\left[\exp \left(u^{\prime} x_{t+1}\right)\right]$,
which is assumed to be defined in an open convex set of \mathbb{R}^{2} (containing zero).
\square We also introduce the conditional Log-Laplace transform:

$$
\psi_{t}\left(u \mid \underline{x}_{t}\right)=\psi_{t}(u)=\log \left[\varphi_{t}\left(u \mid \underline{x}_{t}\right)\right]
$$

\square Let us assume that the (non observable) 2-dimensional factor $x_{t+1}=\left(x_{1, t+1}, x_{2, t+1}\right)^{\prime}$
is a Gaussian $\operatorname{VAR}(1)$ process of the following type:

$$
x_{t+1}=\nu+\Phi x_{t}+\Sigma \varepsilon_{t+1}=\left[\begin{array}{l}
\nu_{1} \\
\nu_{2}
\end{array}\right]+\left[\begin{array}{ll}
\varphi_{11} & \varphi_{12} \\
\varphi_{21} & \varphi_{22}
\end{array}\right] x_{t}+\Sigma\left[\begin{array}{l}
\varepsilon_{1, t} \\
\varepsilon_{2, t}
\end{array}\right]
$$

where ε_{t} is a 2-dimensional Gaussian white noise with $\mathcal{N}\left(0, I_{2}\right)$ distribution.
$\square E_{t}\left[x_{t+1}\right]=\nu+\Phi x_{t}$ and $V_{t}\left[x_{t+1}\right]=\Sigma \Sigma^{\prime}=\Omega$ (symmetric positive semi-definite),
$\Rightarrow x_{t+1} \mid x_{t} \sim N_{K}\left(\nu+\Phi x_{t}, \Omega\right)$ (under $\left.\mathbb{P}\right)$.
\square At date t, the k-step ahead forecast (denoted $x_{t+k \mid t}^{e}$) with a $\operatorname{VAR}(1)$ model:

$$
x_{t+k \mid t}^{e}:=E_{t}\left[x_{t+k}\right]=\left(I_{2}+\Phi+\ldots+\Phi^{k-1}\right) \nu+\Phi^{k} x_{t} .
$$We do not have a unique decomposition of Ω :

- $\Sigma=\left(\sigma_{i, j}\right)$ can be chosen lower triangular (in general : Choleski decomposition) to guarantee $\Omega>0$ and symmetric.
- Using Choleski $\left(\Sigma=\left(\sigma_{i, j}^{c}\right)\right)$ we impose $\sigma_{i, i}^{c}>0, i \in\{1,2\}$, to solve identification problems.
\square Under stationarity (i.e. all values of z such that $\left|I_{2}-\Phi z\right|=0$ lie outside the unit circle), we have
- $E\left[x_{t}\right]=\left(I_{2}-\Phi\right)^{-1} \nu$ and $V\left[x_{t}\right]$ is such that $\operatorname{vec}\left(V\left[x_{t}\right]\right)=\left(I_{2^{2}}-\Phi \otimes \Phi\right)^{-1} \operatorname{vec}(\Omega)$, $\Rightarrow x_{t} \sim N_{2}\left(E\left[x_{t}\right], V\left[x_{t}\right]\right)$ (under \mathbb{P}).

Let us remember that the Laplace transform of a 2-dimensional Gaussian random variable $Y \sim N_{2}(\mu, \equiv)$, with $\mu=\left(\mu_{1}, \mu_{2}\right)^{\prime}, \bar{E}_{11}=V\left[Y_{1}\right], \bar{Z}_{22}=V\left[Y_{2}\right], \overline{1}_{12}=$ $\operatorname{Cov}\left[Y_{1}, Y_{2}\right]=\overline{=}_{21}$, is:

$$
\begin{aligned}
\varphi(u) & =E\left[\exp \left(u_{1} Y_{1}+u_{2} Y_{2}\right)\right]=\exp \left(u^{\prime} \mu+\frac{1}{2} u^{\prime} \equiv u\right) \\
& =\exp \left[\left(u_{1} \mu_{1}+u_{2} \mu_{2}\right)+\frac{1}{2}\left(u_{1}^{2} V\left[Y_{1}\right]+u_{2}^{2} V\left[Y_{2}\right]+2 u_{1} u_{2} \operatorname{Cov}\left[Y_{1}, Y_{2}\right]\right)\right]
\end{aligned}
$$

\square This means that:

$$
\varphi_{t}\left(u \mid \underline{x}_{t}\right)=\varphi_{t}(u)=\exp \left[u^{\prime}\left(\nu+\Phi x_{t}\right)+\frac{1}{2} u^{\prime} \Omega u\right]=\exp \left[\left(u^{\prime} \nu+\frac{1}{2} u^{\prime} \Omega u\right)+u^{\prime} \Phi x_{t}\right]
$$

and

$$
E\left[\exp \left(u^{\prime} x_{t}\right)\right]=\exp \left[u^{\prime} E\left[x_{t}\right]+\frac{1}{2} u^{\prime} V\left[x_{t}\right] u\right]
$$

4.3.2 The Stochastic Discount Factor

\square We specify the following SDF:

$$
M_{t, t+1}=\exp \left[-\beta-\alpha^{\prime} x_{t}+\Gamma_{t}^{\prime} \varepsilon_{t+1}-\frac{1}{2} \Gamma_{t}^{\prime} \Gamma_{t}\right],
$$

\square the coefficients $\alpha=\left[\alpha_{1}, \alpha_{2}\right]^{\prime}$ and β are path independent,
$\square \Gamma_{t}=\Gamma\left(X_{t}\right)=\left(\gamma_{o}+\gamma x_{t}\right)$, where $\gamma_{o}=\left(\gamma_{1, o}, \gamma_{2, o}\right)^{\prime}$ and γ is a (2,2)-matrix:

$$
\begin{aligned}
& \Gamma_{1, t}=\gamma_{o, 1}+\gamma_{1,1} x_{1, t}+\gamma_{1,2} x_{2, t}=\gamma_{1, o}+\widetilde{\gamma}_{1}^{\prime} x_{t} \\
& \Gamma_{2, t}=\gamma_{o, 2}+\gamma_{2,1} x_{1, t}+\gamma_{2,2} x_{2, t}=\gamma_{2, o}+\widetilde{\gamma}_{2}^{\prime} x_{t} .
\end{aligned}
$$

\square This means that, at any date t, the risk-correction coefficients associated to the first and second factor, i.e. $\Gamma_{1, t}$ and $\Gamma_{2, t}$ respectively, are a linear combination of BOTH scalar factors $x_{1, t}$ and $x_{2, t}$.
\square The no-arbitrage restriction $E_{t}\left(M_{t, t+1}\right)=\exp \left(-r_{t}\right)$, implies the relation $r_{t}=\beta+\alpha^{\prime} x_{t}=\beta+\alpha_{1} x_{1, t}+\alpha_{2} x_{2, t}$.
\rightarrow Thus, we now assume that the short rate has a dynamics explained by two variables (two factors) like, for instance, short and long rate, short rate and spread, one yield and one macro variable, level and slope factors.

4.3.3 The Risk Premium

\square Given the following definition of risk premium:

$$
\lambda_{t}=\log E_{t}\left(\frac{P_{t+1}}{P_{t}}\right)-r_{t}=\log E_{t} \exp \left(y_{t+1}\right)-r_{t},
$$

\square and given the payoff $\exp \left(-b^{\prime} x_{t+1}\right)$ at $t+1$, its price in t is given by:

$$
\begin{aligned}
P_{t} & =E_{t}\left[M_{t, t+1} P_{t+1}\right]=\exp \left[-r_{t}-b^{\prime}\left(\nu+\Phi x_{t}\right)-b^{\prime} \Sigma \Gamma_{t}+\frac{1}{2} b^{\prime} \Omega b\right] \\
E_{t} P_{t+1} & =E_{t}\left[\exp \left(-b^{\prime} x_{t+1}\right)\right]=\exp \left[-b^{\prime}\left(\nu+\Phi^{\prime} x_{t}\right)+\frac{1}{2} b^{\prime} \Omega b\right]
\end{aligned}
$$

\square the risk premium is $\lambda_{t}=b^{\prime} \Sigma \Gamma_{t}=b^{\prime} \Sigma\left(\gamma_{o}+\gamma x_{t}\right)$. It is function of the 2-dimensional factor x_{t}.

4.3.4 The Affine Term Structure of Interest Rates

The price at date t of the zero-coupon bond with time to maturity h is :$$
B(t, t+h)=\exp \left(C_{h}^{\prime} x_{t}+D_{h}\right)=\exp \left(C_{1, h} x_{1, t}+C_{2, h} x_{2, t}+D_{h}\right), \quad h \geq 1,
$$

\square where c_{h} and d_{h} satisfies, for $h \geq 1$, the recursive equations:

$$
\left\{\begin{aligned}
C_{h} & =-\alpha+(\Phi+\Sigma \gamma)^{\prime} C_{h-1} \\
& =-\alpha+\Phi^{*^{\prime}} C_{h-1} \\
D_{h} & =-\beta+C_{h-1}^{\prime}\left(\nu+\Sigma \gamma_{o}\right)+\frac{1}{2} C_{h-1}^{\prime}\left(\Sigma \Sigma^{\prime}\right) C_{h-1}+D_{h-1} \\
& =-\beta+C_{h-1}^{\prime} \nu^{*}+\frac{1}{2} C_{h-1}^{\prime} \Omega C_{h-1}+D_{h-1}
\end{aligned}\right.
$$

\square with initial conditions $C_{0}=0, D_{0}=0$ (or $C_{1}=-\alpha, D_{1}=-\beta$).The affine term structure of interest rates formula is:

$$
\begin{aligned}
R(t, t+h)=-\frac{1}{h} \log B(t, t+h) & =-\frac{C_{h}^{\prime}}{h} x_{t}-\frac{D_{h}}{h} \\
& =-\frac{1}{h}\left(C_{1, h} x_{1, t}+C_{2, h} x_{2, t}+D_{h}\right), \quad h \geq 1
\end{aligned}
$$

\square For a given date t, any yield $R(t, t+h)$ is an affine function of the 2-dimensional factor $x_{t}=\left(x_{1, t}, x_{2, t}\right)^{\prime}$.This is the discrete-time equivalent of the bivariate (continuous-time affine)

Vasicek model.

4.3.5 Gaussian Bivariate VAR(1) Observable Factor-Based Model

\square The 2-dimensional factor $\left(x_{t}\right)$ can be considered as a vector of two yields: the first component is assumed to be the short rate r_{t} and the second one is the long rate R_{t}.More precisely, we assume:

$$
x_{t}=\left[\begin{array}{l}
R(t, t+1) \\
R(t, t+H)
\end{array}\right]
$$

where $R(t, t+1)=r_{t}$ and $R(t, t+H)=R_{t}$.we can start better understanding the role of the no-arbitrage restrictions.
\square First, I have to impose that $R(t, t+1)=r_{t}$. This condition generates the AAO restriction:

$$
\begin{aligned}
& R(t, t+1)=\beta+\alpha^{\prime} x_{t}=\beta+\alpha_{1} r_{t}+\alpha_{2} R_{t}=r_{t} \\
& \Leftrightarrow \beta=0, \alpha_{1}=1, \quad \alpha_{2}=0,
\end{aligned}
$$

These conditions are equivalent to $C_{1}=-(1,0)$ and $D_{1}=0$.
\square Second, I have to impose that $R(t, t+H)=R_{t}$ for any t. In this case we have:

$$
\begin{aligned}
& -\frac{1}{H}\left[C_{1, H} r_{t}+C_{2, H} R_{t}+D_{H}\right]=R_{t} \\
& \Leftrightarrow C_{1, H} r_{t}+C_{2, H} R_{t}+D_{H}=-H R_{t} \\
& \Leftrightarrow C_{1, H}=0, \quad C_{2, H}=-H, \quad D_{H}=0
\end{aligned}
$$

that is $C_{H}=-H(0,1)^{\prime}$ and $D_{H}=0$.
\square
In this case, the absence of arbitrage conditions for the 2 yields in x_{t} imply :

$$
\begin{aligned}
& (i) C_{1}=-(1,0)^{\prime}, \quad D_{1}=0 \\
& \text { (ii) } C_{H}=-H(0,1)^{\prime}, \quad D_{H}=0
\end{aligned}
$$The first set of conditions is used as initial value in the recursive equations $\left(C_{h}, D_{h}\right)$.

\square The second condition imply restrictions on model parameters which must be taken into account at the estimation stage. We have to impose to the yield-tomaturity formula to pass through the yields in x_{t}.

Fixed Income and Credit Risk

Lecture 4 - Part III

Discrete-Time Multivariate Gaussian

VAR(p) Term Structure Models

Outline of Lecture 4 - Part III

4.4 Gaussian VAR(1) Factor-Based Term Structure Models

4.4.1 Historical Dynamics
4.4.2 The Stochastic Discount Factor
4.4.3 The Risk Premium
4.4.4 The Affine Term Structure of Interest Rates
4.4.5 Excess Returns of Zero-Coupon Bonds
4.4.6 Risk-Neutral Dynamics
4.4.7 Gaussian VAR(1) Observable Factor-Based Model
4.4.8 The S-Forward Dynamics
4.5 Gaussian VAR (p) Factor-Based Term Structure Models
4.5.1 Historical Dynamics, Stochastic Discount Factor and Affine Term Structure
4.5.2 Risk-Neutral Dynamics
4.5.3 The Gaussian $\operatorname{VAR}(p)$ Observable Factor-Based Model
4.5.4 The S-Forward Dynamics

4.4 Gaussian VAR(1) Factor-Based Term Structure Models

4.4.1 Historical Dynamics

\square We consider our discrete-time economy between dates 0 and T.x_{t} is our factor or a state vector, and it may be observable, partially observable or unobservable by the econometrician.
\square The Gaussian $\operatorname{AR}(p)$ ATSM is (at estimated parameters) not able to completely explain the variability over time and maturities of the observed yield curves \Rightarrow we need more information, i.e. more factors!The size of x_{t} is now assumed to be $K>1$.
\square
The historical dynamics of x_{t} is defined by the joint distribution of $\underline{x}_{T}=$ $\left(x_{0}, \ldots, x_{T}\right)$, denoted by \mathbb{P}, or by the conditional probability density function (p.d.f.):

$$
f_{t}\left(x_{t+1} \mid \underline{x}_{t}\right)
$$or by the conditional Laplace transform (L.T.):

$$
\varphi_{t}\left(u \mid \underline{x}_{t}\right)=\varphi_{t}(u)=E\left[\exp \left(u^{\prime} x_{t+1}\right) \mid \underline{x}_{t}\right]=E_{t}\left[\exp \left(u^{\prime} x_{t+1}\right)\right]
$$

which is assumed to be defined in an open convex set of \mathbb{R}^{K} (containing zero).
\square We also introduce the conditional Log-Laplace transform:

$$
\psi_{t}\left(u \mid \underline{x}_{t}\right)=\psi_{t}(u)=\log \left[\varphi_{t}\left(u \mid \underline{x}_{t}\right)\right]
$$

\square Let us assume that the (non observable) K-dimensional factor $x_{t+1}=\left(x_{1, t+1}, \ldots\right.$, $\left.x_{K, t+1}\right)^{\prime}$ is a Gaussian $\operatorname{VAR}(1)$ process of the following type:

$$
x_{t+1}=\nu+\Phi x_{t}+\sum \varepsilon_{t+1}
$$

where $\varepsilon_{t+1}=\left(\varepsilon_{1, t+1}, \ldots, \varepsilon_{K, t+1}\right)$ is a K-dimensional Gaussian white noise with $\mathcal{N}\left(0, I_{K}\right)$ distribution.
$\square E_{t}\left[x_{t+1}\right]=\nu+\Phi x_{t}$ and $V_{t}\left[x_{t+1}\right]=\Sigma \Sigma^{\prime}=\Omega$ (symmetric positive semi-definite), $\Rightarrow x_{t+1} \mid x_{t} \sim N_{K}\left(\nu+\Phi x_{t}, \Omega\right) \quad($ under $\mathbb{P})$.We do not have a unique decomposition of Ω :

- $\Sigma=\left(\sigma_{i, j}\right)$ can be chosen lower triangular (in general : Choleski decomposition) to guarantee $\Omega>0$ and symmetric.
- Using Choleski $\left(\Sigma=\left(\sigma_{i, j}^{c}\right)\right.$) we impose $\sigma_{i, i}^{c}>0, i \in\{1, \ldots, K\}$, to solve identification problems.
\square Under stationarity (i.e. all values of z such that $\left|I_{K}-\Phi z\right|=0$ lie outside the unit circle), we have
- $E\left[x_{t}\right]=\left(I_{K}-\Phi\right)^{-1} \nu$ and $V\left[x_{t}\right]$ is such that $\operatorname{vec}\left(V\left[x_{t}\right]\right)=\left(I_{K^{2}}-\Phi \otimes \Phi\right)^{-1} \operatorname{vec}(\Omega)$, $\Rightarrow x_{t} \sim N_{K}\left(E\left[x_{t}\right], V\left[x_{t}\right]\right)$ (under $\left.\mathbb{P}\right)$.Let us remember that the Laplace transform of a K-dimensional Gaussian random variable $Y \sim N_{K}(\mu$, 三) is:

$$
\varphi(u)=E\left[\exp \left(u^{\prime} Y\right)\right]=\exp \left(u^{\prime} \mu+\frac{1}{2} u^{\prime} \equiv u\right)
$$This means that:

$$
\varphi_{t}\left(u \mid \underline{x}_{t}\right)=\varphi_{t}(u)=\exp \left[u^{\prime}\left(\nu+\Phi x_{t}\right)+\frac{1}{2} u^{\prime} \Omega u\right],
$$and

$$
E\left[\exp \left(u^{\prime} x_{t}\right)\right]=\exp \left[u^{\prime} E\left[x_{t}\right]+\frac{1}{2} u^{\prime} V\left[x_{t}\right] u\right]
$$

4.4.2 The Stochastic Discount Factor

We specify the following SDF:$$
M_{t, t+1}=\exp \left[-\beta-\alpha^{\prime} x_{t}+\Gamma_{t}^{\prime} \varepsilon_{t+1}-\frac{1}{2} \Gamma_{t}^{\prime} \Gamma_{t}\right],
$$

\square the coefficients $\alpha=\left[\alpha_{1}, \ldots, \alpha_{K}\right]^{\prime}$ and β are path independent,
$\square \Gamma_{t}=\Gamma\left(X_{t}\right)=\left(\gamma_{o}+\gamma x_{t}\right)$, where $\gamma_{o}=\left(\gamma_{1, o}, \ldots, \gamma_{K, o}\right)^{\prime}$ and γ is a (K, K)-matrix:

$$
\begin{aligned}
\Gamma_{1, t} & =\gamma_{1, o}+\gamma_{1,1} x_{1, t}+\gamma_{1,2} x_{2, t}+\ldots+\gamma_{1, K} x_{K, t}=\gamma_{1, o}+\widetilde{\gamma}_{1}^{\prime} x_{t} \\
\vdots & \\
\Gamma_{K, t} & =\gamma_{K, o}+\gamma_{K, 1} x_{1, t}+\gamma_{K, 2} x_{2, t}+\ldots+\gamma_{K, K} x_{K, t}=\gamma_{K, o}+\widetilde{\gamma}_{K}^{\prime} x_{t} .
\end{aligned}
$$

\square This means that, at any date t, the risk-correction coefficient associated to the $j^{t h}$ factor, i.e. $\Gamma_{j, t}$, is a linear combination of ALL the K scalar factors.
\square The no-arbitrage restriction $E_{t}\left(M_{t, t+1}\right)=\exp \left(-r_{t}\right)$, implies the relation $r_{t}=$ $\beta+\alpha^{\prime} x_{t}=\beta+\alpha_{1} x_{1, t}+\ldots+\alpha_{K} x_{K, t}$.
\rightarrow Now, the short rate is explained by a linear combination of K variables that we can select as a mix of yields, latent factors (level/slope) and macro variables.

4.4.3 The Risk Premium

\square Given the risk premium :

$$
\lambda_{t}=\log E_{t}\left(\frac{P_{t+1}}{P_{t}}\right)-r_{t}=\log E_{t} \exp \left(y_{t+1}\right)-r_{t},
$$

\square and given the payoff $\exp \left(-b^{\prime} x_{t+1}\right)$ at $t+1$, its price in t is given by:

$$
\begin{aligned}
P_{t} & =E_{t}\left[M_{t, t+1} P_{t+1}\right]=\exp \left[-r_{t}-b^{\prime}\left(\nu+\Phi x_{t}\right)-b^{\prime} \Sigma \Gamma_{t}+\frac{1}{2} b^{\prime} \Omega b\right] \\
E_{t} P_{t+1} & =E_{t}\left[\exp \left(-b^{\prime} x_{t+1}\right)\right]=\exp \left[-b^{\prime}\left(\nu+\Phi^{\prime} x_{t}\right)+\frac{1}{2} b^{\prime} \Omega b\right] .
\end{aligned}
$$

\square the risk premium is $\lambda_{t}=b^{\prime} \Sigma \Gamma_{t}=b^{\prime} \Sigma\left(\gamma_{o}+\gamma x_{t}\right)$. It is function of the $K-$ dimensional factor x_{t}.

4.4.4 The Affine Term Structure of Interest Rates

The price at date t of the zero-coupon bond with time to maturity h is :$$
B(t, t+h)=\exp \left(C_{h}^{\prime} x_{t}+D_{h}\right)=\exp \left(C_{1, h} x_{1, t}+\ldots+C_{K, h} x_{K, t}+D_{h}\right), h \geq 1,
$$where c_{h} and d_{h} satisfies, for $h \geq 1$, the recursive equations:

$$
\left\{\begin{aligned}
C_{h} & =-\alpha+(\Phi+\Sigma \gamma)^{\prime} C_{h-1} \\
& =-\alpha+\Phi^{*^{\prime}} C_{h-1} \\
D_{h} & =-\beta+C_{h-1}^{\prime}\left(\nu+\Sigma \gamma_{o}\right)+\frac{1}{2} C_{h-1}^{\prime}\left(\Sigma \Sigma^{\prime}\right) C_{h-1}+D_{h-1} \\
& =-\beta+C_{h-1}^{\prime} \nu^{*}+\frac{1}{2} C_{h-1}^{\prime} \Omega C_{h-1}+D_{h-1}
\end{aligned}\right.
$$

\square with initial conditions $C_{0}=0, D_{0}=0$ (or $C_{1}=-\alpha, D_{1}=-\beta$).
\square The (continuously compounded) affine term structure of interest rates is given by:

$$
R(t, t+h)=-\frac{1}{h} \log B(t, t+h)=-\frac{C_{h}^{\prime}}{h} x_{t}-\frac{D_{h}}{h}, \quad h \geq 1,
$$For a given date t, any yield $R(t, t+h)$ is an affine function of the K-dimensional factor $x_{t}=\left(x_{1, t}, \ldots, x_{K, t}\right)^{\prime}$.

\square This is the discrete-time equivalent of the multivariate (continuous-time affine)
Vasicek model.

4.4.5 Excess Returns of Zero-Coupon Bonds

\square Under no-arbitrage, and for a fixed maturity T, the one-period geometric zerocoupon bond return process $\rho=[\rho(t, T), 0 \leq t \leq T]$, where $\rho(t+1, T)=$ $\log [B(t+1, T)]-\log [B(t, T)]$, is given by:

$$
\rho(t+1, T)=r_{t}-\frac{1}{2} \omega(t+1, T)^{\prime} \omega(t+1, T)+\omega(t+1, T)^{\prime} \Gamma_{t}-\omega(t+1, T)^{\prime} \varepsilon_{t+1},
$$

where $\omega(t+1, T)=-\left(\Sigma^{\prime} C_{T-t-1}\right)$ is an K-dimensional vector.
\square
The associated risk premium, between t and $t+1$, is given by :

$$
\lambda_{t}(T)=\omega(t+1, T)^{\prime} \Gamma_{t}=\sum_{i=1}^{K} \omega_{i}(t+1, T) \Gamma_{i, t}
$$

where $\omega(t+1, T)=\left[\omega_{1}(t+1, T), \ldots, \omega_{K}(t+1, T)\right]^{\prime}$.
\square It is important to highlight that, in this multivariate setting, the magnitude of $\lambda_{t}(T)$ is given by a linear combination of the K scalar risk premia $\Gamma_{i, t}=\gamma_{o, i}+\widetilde{\gamma}_{i}^{\prime} x_{t}$.In other words, ALL scalar factors $x_{i, t}$, with $i \in\{1, \ldots, K\}$, determine the magnitude and the variability over time of ANY (scalar) risk premia $\Gamma_{i, t}$.

4.4.6 Risk-Neutral Dynamics

The risk-neutral Laplace transform of x_{t+1}, conditionally to x_{t}, is given by:$$
\begin{aligned}
E_{t}^{\mathbb{Q}}\left[\exp \left(u^{\prime} x_{t+1}\right)\right] & =E_{t}\left[\frac{M_{t, t+1}}{E_{t}\left(M_{t, t+1}\right)} \exp \left(u^{\prime} x_{t+1}\right)\right] \\
& =E_{t}\left[\exp \left(\Gamma_{t}^{\prime} \varepsilon_{t+1}-\frac{1}{2} \Gamma_{t}^{\prime} \Gamma_{t}+u^{\prime} x_{t+1}\right)\right] \\
& \left.=\exp \left[u^{\prime}\left(\nu+\Phi x_{t}\right)-\frac{1}{2} \Gamma_{t}^{\prime} \Gamma_{t}\right)\right] E_{t}\left[\exp \left(\Gamma_{t}+\Sigma^{\prime} u\right)^{\prime} \varepsilon_{t+1}\right] \\
& =\exp \left[u^{\prime}\left[\left(\nu+\Sigma \gamma_{o}\right)+(\Phi+\Sigma \gamma) x_{t}\right]+\frac{1}{2} u^{\prime}\left(\Sigma \Sigma^{\prime}\right) u\right]
\end{aligned}
$$

\square Under the risk neutral probability \mathbb{Q}, x_{t+1} is an K-dimensional VAR(1) process of the following type:

$$
x_{t+1}=\nu^{*}+\Phi^{*} x_{t}+\Sigma^{*} \eta_{t+1}
$$with

$$
\nu^{*}=\left(\nu+\sigma \gamma_{o}\right), \quad \Phi^{*}=(\Phi+\Sigma \gamma), \quad \Sigma^{*}=\Sigma
$$

\square and where η_{t+1} is (under \mathbb{Q}) an K-dimensional Gaussian white noise with $\mathcal{N}\left(0, I_{K}\right)$ distribution.In the risk-neutral framework, for a fixed maturity T, the one-period geometric zero-coupon bond return process satisfies the relation:

$$
\rho(t+1, T)=r_{t}-\frac{1}{2} \omega(t+1, T)^{\prime} \omega(t+1, T)-\omega(t+1, T)^{\prime} \eta_{t+1}
$$

with a risk premium $\lambda_{t}^{\mathbb{Q}}(T)=0$.

4.4.7 Gaussian VAR(1) Observable Factor-Based Model

\square The K-dimensional factor $\left(x_{t}\right)$ can be considered as a vector of yields at different maturities in which the first component is assumed to be the short rate r_{t}.
\square More precisely, we assume:

$$
x_{t}=\left[\begin{array}{c}
R\left(t, t+h_{1}\right) \\
R\left(t, t+h_{2}\right) \\
\vdots \\
R\left(t, t+h_{K}\right)
\end{array}\right]
$$

where $R\left(t, t+h_{1}\right)=R(t, t+1)=r_{t}$ and $h_{1}<h_{2}<\ldots<h_{K}$.let us see how no-arbitrage restrictions apply in this general setting.
\square In this case, the absence of arbitrage conditions for the K yields in x_{t} imply :

$$
\begin{aligned}
\text { (i) } C_{1} & =-e_{1}, \quad D_{1}=0 \\
\text { (ii) } C_{h_{j}} & =-h_{j} e_{h_{j}}, \quad D_{h_{j}}=0, \forall j \in\{2, \ldots, K\}
\end{aligned}
$$

where $e_{h_{j}}$ denotes the $h_{j}^{t h}$ element of the canonical basis in \mathbb{R}^{K}.
\square The first set of conditions is used as initial value in the recursive equations $\left(C_{h}, D_{h}\right)$.The second set of ($K-1$) conditions imply restrictions on model parameters which must be taken into account at the estimation stage. We have to impose to the yield-to-maturity formula to pass through the yields in x_{t}.

4.4.8 The S-Forward Dynamics

The S-forward dynamics of the K-dimensional factor x_{t+1} has an VAR(1) representation of the following type:$$
x_{t+1}=\nu_{S}+\Phi^{*} x_{t}+\Sigma^{*} \xi_{t+1}
$$

with

$$
\nu_{S}=\nu^{*}-\Sigma^{*} \omega(t+1, S)
$$

and where $\xi_{t+1} \sim \mathcal{I I N}(0, I)$ under $\mathbb{Q}^{(S)}$.The one-period geometric zero-coupon bond return process is given by:

$$
\begin{aligned}
\rho(t+1, T)= & r_{t}-\omega(t+1, T)^{\prime} \xi_{t+1}- \\
& \frac{1}{2} \omega(t+1, T)^{\prime} \omega(t+1, T)+\omega(t+1, T)^{\prime} \omega(t+1, S)
\end{aligned}
$$

\square with one-period risk premium given by :

$$
\lambda_{t}^{\mathbb{Q}^{(s)}}(T)=\log E_{t}^{\mathbb{Q}^{(s)}} \exp [\rho(t+1, T)]-r_{t}=\omega(t+1, T)^{\prime} \omega(t+1, S)
$$

4.5.1 Gaussian VAR(p) Factor-Based Term Structure Models

4.5.1 Historical Dynamics, SDF and Affine Term Structure

\square Let us assume now that the latent factor $x_{t+1}=\left(x_{1, t+1}, \ldots, x_{K, t+1}\right)^{\prime}$ driving the term structure is an K-dimensional $\operatorname{VAR}(p)$ process of the following type:

$$
\begin{align*}
x_{t+1} & =\nu+\Phi_{1} x_{t}+\ldots+\Phi_{p} x_{t+1-p}+\Sigma \varepsilon_{t+1} \\
& =\nu+\Phi X_{t}+\Sigma \varepsilon_{t+1}, \tag{1}
\end{align*}
$$

where ε_{t+1} is a K-dimensional Gaussian white noise with $\mathcal{N}\left(0, I_{K}\right)$ distribution.
$\square \Sigma$ and Φ_{j}, for each $j \in\{1, \ldots, p\}$, are (K, K) matrices and Σ can be chosen, for instance, lower triangular (Choleski decomposition).
\square
$\Phi=\left[\Phi_{1}, \ldots, \Phi_{p}\right]$ is an $(K, K p)$ matrix, ν is an K-dimensional vector, while $X_{t}=$ $\left(x_{t}^{\prime}, \ldots, x_{t+1-p}^{\prime}\right)^{\prime}$ is an $(K p)$-dimensional vector.
\square The model can be represented in the following ($K p$)-dimensional $\operatorname{AR}(1)$ form:

$$
\begin{equation*}
X_{t+1}=\widetilde{\Phi} X_{t}+\left[\nu+\Sigma \varepsilon_{t+1}\right] e_{1} \tag{2}
\end{equation*}
$$

where e_{1} is a vector of size ($K p$), with all entries equal to zero except for the first K elements which are all equal to oneand where

$$
\widetilde{\Phi}=\left[\begin{array}{ccccc}
\Phi_{1} & \ldots & \ldots & \boldsymbol{\Phi}_{p-1} & \Phi_{p} \\
I_{K} & \mathbf{0}_{K} & \ldots & \mathbf{0}_{K} & \mathbf{0}_{K} \\
\mathbf{0}_{K} & I_{K} & \cdots & \mathbf{0}_{K} & \mathbf{0}_{K} \\
\vdots & & \ddots & \vdots & \vdots \\
\mathbf{0}_{K} & \cdots & \cdots & I_{K} & \mathbf{0}_{K}
\end{array}\right] \text { is a (Kp,Kp) matrix. }
$$

$\square E_{t}\left[x_{t+1}\right]=\nu+\Phi_{1} x_{t}+\ldots+\Phi_{p} x_{t+1-p}$ and $V_{t}\left[x_{t+1}\right]=\Sigma \Sigma^{\prime}=\Omega$,
$\Rightarrow x_{t+1} \mid x_{t} \sim N\left(\nu+\Phi X_{t}, \Omega\right)$ (under $\left.\mathbb{P}\right)$.
\square Under stationarity (i.e. all values of z such that $\left|I_{k}-\sum_{j=1}^{p} \Phi_{j} z^{j}\right|=0$ lie outside the unit circle), we have $E\left[x_{t}\right]=\left(I_{K}-\sum_{j=1}^{p} \Phi_{j}\right)^{-1} \nu$ and $V\left[x_{t}\right]$ [see Hamilton (1994, Chapter 10) and Lutkepohl (2005, Chapter 2)],
$\Rightarrow x_{t} \sim N\left(E\left[x_{t}\right], V\left[x_{t}\right]\right) \quad$ (under $\left.\mathbb{P}\right)$.the SDF is defined as:

$$
\begin{equation*}
M_{t, t+1}=\exp \left[-\beta-\alpha^{\prime} X_{t}+\Gamma_{t}^{\prime} \varepsilon_{t+1}-\frac{1}{2} \Gamma_{t}^{\prime} \Gamma_{t}\right] \tag{3}
\end{equation*}
$$

\square where $\Gamma_{t}=\gamma_{o}+\widetilde{\Gamma} X_{t}, \Gamma_{t}=\left[\Gamma_{1, t}, \ldots, \Gamma_{K, t}\right]^{\prime}$ and with:

$$
\begin{equation*}
\Gamma_{i, t}=\gamma_{o, i}+\sum_{j=1}^{p} \widetilde{\gamma}_{i, j}^{\prime} x_{t-j+1}, \quad i \in\{1, \ldots, K\} \tag{4}
\end{equation*}
$$

with $\gamma_{o}=\left[\gamma_{o, 1}, \ldots, \gamma_{o, K}\right]^{\prime}$ a K-dimensional vector,and where

$$
\widetilde{\Gamma}=\left[\begin{array}{ccccc}
\widetilde{\gamma}_{1,1}^{\prime} & \cdots & \cdots & \widetilde{\gamma}_{1, p-1}^{\prime} & \widetilde{\gamma}_{1, p}^{\prime} \tag{5}\\
\widetilde{\gamma}_{2,1}^{\prime} & \cdots & \cdots & \widetilde{\gamma}_{2, p-1}^{\prime} & \widetilde{\gamma}_{2, p}^{\prime} \\
\vdots & & \ddots & \vdots & \vdots \\
\widetilde{\gamma}_{K, 1}^{\prime} & \cdots & \cdots & \widetilde{\gamma}_{K, p-1}^{\prime} & \widetilde{\gamma}_{K, p}^{\prime}
\end{array}\right] \quad \text { is a }(K, K p) \text { matrix. }
$$Moreover, assuming the absence of arbitrage opportunities for r_{t} we get $r_{t}=$ $\beta+\alpha^{\prime} X_{t}$, where α is a ($K p$)-dimensional vector.

\square It is also easy to verify that the risk premium, for an asset providing the payoff $\exp \left(-b^{\prime} x_{t+1}\right)$ at $t+1$, is $\lambda_{t}=b^{\prime} \Sigma \Gamma_{t}=b^{\prime} \Sigma\left(\gamma_{o}+\widetilde{\Gamma} X_{t}\right)$.
\square This means that the date- t risk-premium λ_{t} is determined by a linear combination of the p most recent lagged values of the K scalar factors $x_{i, t+1}$ with $i \in\{1, \ldots, K\}$.In the Gaussian VAR (p) Factor-Based Term Structure Model, the price at date t of the zero-coupon bond with time to maturity h is :

$$
\begin{equation*}
B(t, t+h)=\exp \left(C_{h}^{\prime} X_{t}+D_{h}\right) \tag{6}
\end{equation*}
$$

\square where C_{h} and D_{h} satisfies, for $h \geq 1$, the recursive equations:

$$
\left\{\begin{align*}
C_{h} & =-\alpha+\widetilde{\Phi}^{\prime} C_{h-1}+(\Sigma \widetilde{\Gamma})^{\prime} C_{1, h-1} \tag{7}\\
& =-\alpha+\widetilde{\Phi}^{*^{\prime}} c_{h-1} \\
D_{h} & =-\beta+C_{1, h-1}^{\prime}\left(\nu+\Sigma \gamma_{o}\right)+\frac{1}{2} C_{1, h-1}^{\prime}\left(\Sigma \Sigma^{\prime}\right) C_{1, h-1}+D_{h-1}
\end{align*}\right.
$$and where :

$$
\widetilde{\Phi}^{*}=\left[\begin{array}{ccccc}
\Phi_{1}+\Sigma \gamma_{1} & \ldots & \ldots & \Phi_{p-1}+\Sigma \gamma_{p-1} & \Phi_{p}+\Sigma \gamma_{p} \tag{8}\\
I_{K} & \mathbf{0}_{K} & \ldots & \mathbf{0}_{K} & \mathbf{0}_{K} \\
\mathbf{0}_{K} & I_{K} & \ldots & \mathbf{0}_{K} & \mathbf{0}_{K} \\
\vdots & & \ddots & \vdots & \vdots \\
\mathbf{0}_{K} & \ldots & \ldots & I_{K} & \mathbf{0}_{K}
\end{array}\right] \text { is a (Kp,Kp) matrix, }
$$

γ_{i} 's are (K, K) matrices such that $\tilde{\Gamma}=\left[\gamma_{1}, \ldots, \gamma_{p}\right]$. That is : $\gamma_{i}=\left[\begin{array}{c}\widetilde{\gamma}_{1, i}^{\prime} \\ \vdots \\ \widetilde{\gamma}_{K, i}^{\prime}\end{array}\right]$;
\square the initial conditions are $C_{0}=0, D_{0}=0\left(\right.$ or $C_{1}=-\alpha, D_{1}=-\beta$), where $C_{1, h}$ indicates the vector of the first K components of the ($K p$)-dimensional vector C_{h}.
\square The (continuously compounded) term structure of interest rates is given by:

$$
\begin{equation*}
R(t, t+h)=-\frac{1}{h} \log B(t, t+h)=-\frac{C_{h}^{\prime}}{h} X_{t}-\frac{D_{h}}{h}, \quad h \geq 1 \tag{9}
\end{equation*}
$$

\square For a given date t, any yield $R(t, t+h)$ is an affine function of the factor X_{t}, that is of the p most recent lagged values of the K-dimensional factor x_{t+1}.

With regard to the one-period geometric zero-coupon bond return process $\rho=$ [$\rho(t, T), 0 \leq t \leq T]$, it is easy to verify that:

$$
\rho(t+1, T)=r_{t}-\frac{1}{2} \omega(t+1, T)^{\prime} \omega(t+1, T)+\omega(t+1, T)^{\prime} \Gamma_{t}-\omega(t+1, T)^{\prime} \varepsilon_{t+1}
$$

where $\omega(t+1, T)=-\left(\Sigma^{\prime} C_{1, T-t-1}\right)$ is an K-dimensional vector.
\square
The associated risk premium, between t and $t+1$, is given by :

$$
\begin{aligned}
\lambda_{t}(T) & =\omega(t+1, T)^{\prime} \Gamma_{t}=\sum_{i=1}^{K} \omega_{i}(t+1, T) \Gamma_{i, t} \\
& =\sum_{i=1}^{K} \omega_{i}(t+1, T)\left(\gamma_{o, i}+\sum_{j=1}^{p} \widetilde{\gamma}_{i, j}^{\prime} x_{t-j+1}\right)
\end{aligned}
$$

where $\omega(t+1, T)=\left[\omega_{1}(t+1, T), \ldots, \omega_{K}(t+1, T)\right]^{\prime}$.
\square One may notice that, in this multivariate setting, the magnitude of $\lambda_{t}(T)$ is given by a linear combination of the K risk premia $\Gamma_{i, t}=\gamma_{o, i}+\sum_{j=1}^{p} \widetilde{\gamma}_{i, j}^{\prime} x_{t-j+1}$.
\square Moreover, for a given matrix $\widetilde{\Gamma}$ different from zero, $\lambda_{t}(T)$ is function of the p most recent lagged values of the K-dimensional factor x_{t+1}.

4.5.2 The Risk-Neutral Dynamics

The risk-neutral Laplace transform of x_{t+1}, conditionally to $\underline{x_{t}}$, is given by:$$
\begin{aligned}
E_{t}^{\mathbb{Q}}\left[\exp \left(u^{\prime} x_{t+1}\right)\right] & =E_{t}\left[\frac{M_{t, t+1}}{E_{t}\left(M_{t, t+1}\right)} \exp \left(u^{\prime} x_{t+1}\right)\right] \\
& =E_{t}\left[\exp \left(\Gamma_{t}^{\prime} \varepsilon_{t+1}-\frac{1}{2} \Gamma_{t}^{\prime} \Gamma_{t}+u^{\prime} x_{t+1}\right)\right] \\
& \left.=\exp \left[u^{\prime}\left(\nu+\Phi X_{t}\right)-\frac{1}{2} \Gamma_{t}^{\prime} \Gamma_{t}\right)\right] E_{t}\left[\exp \left(\Gamma_{t}+\Sigma^{\prime} u\right)^{\prime} \varepsilon_{t+1}\right] \\
& =\exp \left[u^{\prime}\left[\left(\nu+\Sigma \gamma_{o}\right)+(\Phi+\Sigma \widetilde{\Gamma}) X_{t}\right]+\frac{1}{2} u^{\prime}\left(\Sigma \Sigma^{\prime}\right) u\right] .
\end{aligned}
$$

\square Under the risk neutral probability \mathbb{Q}, x_{t+1} is a K-dimensional $\operatorname{VAR}(p)$ process of the following type:

$$
\begin{align*}
x_{t+1} & =\nu^{*}+\Phi_{1}^{*} x_{t}+\ldots+\Phi_{p}^{*} x_{t+1-p}+\Sigma^{*} \eta_{t+1} \tag{10}\\
& =\nu^{*}+\Phi^{*} X_{t}+\Sigma^{*} \eta_{t+1},
\end{align*}
$$

\square
with

$$
\begin{aligned}
\nu^{*} & =\left(\nu+\Sigma \gamma_{o}\right), \quad \Phi_{j}^{*}=\left(\Phi_{j}+\Sigma \gamma_{j}\right), \quad \text { for } j \in\{1, \ldots, p\} \\
\Phi^{*} & =\left[\Phi_{1}^{*}, \ldots, \Phi_{p}^{*}\right], \quad \Sigma^{*}=\Sigma
\end{aligned}
$$

\square where η_{t+1} is (under \mathbb{Q}) an K-dimensional gaussian white noise with $\mathcal{N}\left(0, I_{K}\right)$ distribution.
\square This model can be represented in the following vectorial form :

$$
X_{t+1}=\widetilde{\Phi}^{*} X_{t}+\left[\nu^{*}+\Sigma^{*} \eta_{t+1}\right] e_{1}
$$

where e_{1} is the vector of size $(K p)$, with all entries equal to zero except for the first K elements which are all equal to one.

4.5.3 The Gaussian $\operatorname{VAR}(p)$ Observable Factor-Based Model

\square It is like in the previous lecture, with

$$
x_{t}=\left[\begin{array}{c}
R\left(t, t+h_{1}\right) \\
R\left(t, t+h_{2}\right) \\
\vdots \\
R\left(t, t+h_{K}\right)
\end{array}\right]
$$

and where $R\left(t, t+h_{1}\right)=R(t, t+1)=r_{t}$ and $h_{1}<h_{2}<\ldots<h_{K}$.
\square The absence of arbitrage conditions for the K yields in x_{t} imply :

$$
\begin{align*}
& (i) C_{1}=-e_{1}, \quad D_{1}=0 \tag{11}\\
& \text { (ii) } C_{h_{j}}=-h_{j} e_{h_{j}}, \quad D_{h_{j}}=0, \forall j \in\{2, \ldots, K\}
\end{align*}
$$

where $e_{h_{j}}$ denotes the $h_{j}^{t h}$ element of the canonical basis in $\mathbb{R}^{K p}$.

4.5.4 The S-Forward Dynamics

\square The S-forward dynamics of the K-dimensional factor x_{t+1} has an $\operatorname{VAR}(p)$ representation of the following type:

$$
\begin{equation*}
x_{t+1}=\nu_{S}+\Phi_{1}^{*} x_{t}+\ldots+\Phi_{p}^{*} x_{t+1-p}+\Sigma^{*} \xi_{t+1} \tag{12}
\end{equation*}
$$

\square with

$$
\nu_{S}=\nu^{*}-\Sigma^{*} \omega(t+1, S),
$$and where $\xi_{t+1} \sim \operatorname{IIN}\left(0, I_{K}\right)$ under $\mathbb{Q}^{(S)}$.This model can be represented in the following vectorial form :

$$
X_{t+1}=\widetilde{\Phi}^{*} X_{t}+\left[\nu_{S}+\Sigma^{*} \xi_{t+1}\right] e_{1}
$$

where e_{1} denotes the vector of size ($K p$), with all entries equal to zero except for the first K elements which are all equal to one.The one-period geometric zero-coupon bond return process is given by:

$$
\begin{gathered}
\rho(t+1, T)=r_{t}-\omega(t+1, T)^{\prime} \xi_{t+1}-\frac{1}{2} \omega(t+1, T)^{\prime} \omega(t+1, T) \\
+\omega(t+1, T)^{\prime} \omega(t+1, S)
\end{gathered}
$$with one-period risk premium given by :

$$
\lambda_{t}^{\mathbb{Q}^{(s)}}(T)=\log E_{t}^{\mathbb{Q}^{(s)}} \exp [\rho(t+1, T)]-r_{t}=\omega(t+1, T)^{\prime} \omega(t+1, S) .
$$

