Fixed Income and Credit Risk : exercise sheet $\mathrm{n}^{\circ} 04$

Fall Semester 2012

Professor	Assistant	Program
Fulvio Pegoraro	Roberto Marfè	MSc. Finance

Exercise ${ }^{\circ} 01$ [Exponential-affine ZCB Pricing Formula].

Let us consider a discrete-time univariate Gaussian term structure model, in which the factor x_{t+1} has an historical dynamics described by the Gaussian $\operatorname{AR}(p)$ process:

$$
\begin{aligned}
x_{t+1} & =\nu+\varphi_{1} x_{t}+\ldots+\varphi_{p} x_{t+1-p}+\sigma \varepsilon_{t+1} \\
& =\nu+\varphi^{\prime} X_{t}+\sigma \varepsilon_{t+1},
\end{aligned}
$$

where ε_{t+1} is a Gaussian white noise with $\mathcal{N}(0,1)$ distribution. We have: $\varphi=\left[\varphi_{1}, \ldots, \varphi_{p}\right]^{\prime}$, $X_{t}=\left[x_{t}, \ldots, x_{t+1-p}\right]^{\prime}$, and where $\sigma>0, \nu$ and φ_{i}, for $i \in\{1, \ldots, p\}$, are scalar coefficients. Let us also assume that the stochastic discount factor (SDF) $M_{t, t+1}$ for the period ($t, t+1$) has the following exponential-affine specification:

$$
M_{t, t+1}=\exp \left[-\beta-\alpha^{\prime} X_{t}+\Gamma_{t} \varepsilon_{t+1}-\frac{1}{2} \Gamma_{t}^{2}\right] .
$$

Prove that the price at date t of the zero-coupon bond with time to maturity h is :

$$
B(t, t+h)=\exp \left(c_{h}^{\prime} X_{t}+d_{h}\right), \quad h \geq 1
$$

where c_{h} and d_{h} satisfies the recursive equations :

$$
\begin{aligned}
& c_{h}=-\alpha+\Phi^{\prime} c_{h-1}+c_{1, h-1} \sigma \gamma=-\alpha+\Phi^{*^{\prime}} c_{h-1}, \\
& d_{h}=-\beta+c_{1, h-1}\left(\nu+\gamma_{o} \sigma\right)+\frac{1}{2} c_{1, h-1}^{2} \sigma^{2}+d_{h-1}
\end{aligned}
$$

with :

$$
\Phi^{*}=\left[\begin{array}{ccccc}
\varphi_{1}+\sigma \gamma_{1} & \ldots & \ldots & \varphi_{p-1}+\sigma \gamma_{p-1} & \varphi_{p}+\sigma \gamma_{p} \\
1 & 0 & \ldots & 0 & 0 \\
0 & 1 & \ldots & 0 & 0 \\
\vdots & & \ddots & \vdots & \vdots \\
0 & \ldots & \ldots & 1 & 0
\end{array}\right] .
$$

and where the initial conditions are $c_{0}=0, d_{0}=0$ (or $c_{1}=-\alpha, d_{1}=-\beta$); $c_{1, h}$ is the first component of the p-dimensional vector c_{h}.

Exercise $\mathbf{N}^{\circ} 02$ [Identification Issue in latent factor Gaussian ATSMs].

Let us consider, for ease of exposition, the Gaussian $\operatorname{AR}(1)$ Factor-Based term structure model. This Gaussian ATSM can be summarized as follows:

$$
\begin{array}{ll}
x_{t+1} & =\nu+\varphi x_{t}+\sigma \varepsilon_{t+1}, \varepsilon_{t+1} \sim \mathcal{N}(0,1) \quad(\text { under } \mathbb{P}) \\
M_{t, t+1} & =\exp \left[-\beta-\alpha x_{t}+\Gamma_{t} \varepsilon_{t+1}-\frac{1}{2} \Gamma_{t}^{2}\right], \quad(\mathrm{SDF}) \\
r_{t} & =\beta+\alpha x_{t}, \Gamma_{t}=\Gamma\left(x_{t}\right)=\left(\gamma_{o}+\gamma x_{t}\right), \\
R(t, h) & =-\frac{c_{h}}{h} x_{t}-\frac{d_{h}}{h}, \\
c_{h} & =-\alpha+\varphi c_{h-1}+c_{h-1} \sigma \gamma=-\alpha+(\varphi+\sigma \gamma) c_{h-1}, \\
d_{h} & =-\beta+c_{h-1}\left(\nu+\gamma_{o} \sigma\right)+\frac{1}{2} c_{h-1}^{2} \sigma^{2}+d_{h-1}, \\
c_{0}=0, d_{0}=0 . &
\end{array}
$$

The purpose of this exercise is to discuss the identification problem characterizing the above summarized Gaussian AR(1) ATSM where x_{t} is a latent factor. Show that there exist different set of historical parameter values (ν, φ, σ) and/or parameter values in the $\operatorname{SDF}\left(\beta, \alpha, \gamma_{o}, \gamma\right)$ generating the same yield for any residual maturity. Propose a set of parameter restrictions giving the possibility to solve this identification problem.

Exercise ${ }^{\circ} 03$ [Excess Returns of Zero-Coupon Bonds].

Prove that, under the absence of arbitrage opportunity, and for a fixed maturity T, the oneperiod geometric zero-coupon bond return process $\rho=[\rho(t, T), 0 \leq t \leq T]$, where $\rho(t+1, T)=$ $\log [B(t+1, T)]-\log [B(t, T)]$, is given by:

$$
\rho(t+1, T)=r_{t}-\frac{1}{2} \omega(t+1, T)^{2}+\omega(t+1, T) \Gamma_{t}-\omega(t+1, T) \varepsilon_{t+1},
$$

where $\omega(t+1, T)=-\left(\sigma c_{1, T-t-1}\right)$.

Exercise $\mathbf{N}^{\circ} \mathbf{0 4}$ [Risk-Neutral Laplace Transform of the Gaussian AR(p) Factor].

Let us consider the Gaussian $\operatorname{AR}(p)$ distributed factor x_{t+1} and the SDF $M_{t, t+1}$ mentioned in the Exercise 1. Calculate the risk-neutral Laplace transform of x_{t+1}, conditionally to $\underline{x_{t}}$.

Exercise $\mathrm{N}^{\circ} 05$ [Risk-Neutral Zero-Coupon Bond Return Process].

Prove that, in the risk-neutral framework, for a fixed maturity T, the one-period geometric zerocoupon bond return process satisfies the relation:

$$
\rho(t+1, T)=r_{t}-\frac{1}{2} \omega(t+1, T)^{2}-\omega(t+1, T) \eta_{t+1},
$$

with a risk premium equal to :

$$
\lambda_{t}^{\mathbb{Q}}(\rho, 1)=\log E_{t}^{\mathbb{Q}} \exp [\rho(t+1, T)]-r_{t}=0 .
$$

Exercise N ${ }^{\circ} 06$ [Yield Curve Shapes, Risk-Neutral Stationarity and Long Rates].

Let us consider our discrete-time univariate Gaussian term structure model, in which the factor x_{t+1} has an historical dynamics described by a Gaussian AR(1) process, and the one-period SDF has the exponential-affine form mentioned in the Exercise 1. Assuming $x_{t+1}=r_{t+1}$ (the scalar factor is the short rate), study the kind of shapes the yield curve formula $R(t, h)$ can generate on the basis of the dynamic properties of the system of difference equations (c_{h}, d_{h}). Then, repeat the same analysis for $p=2$.

Exercise $\mathrm{N}^{\circ} 07$ [Exercise N° 06, continued].

Let us now consider our discrete-time univariate Gaussian term structure model, in which the factor x_{t+1} has an historical dynamics described by a Gaussian $\operatorname{AR}(p)$ process, and the one-period SDF has the exponential-affine form mentioned in the Exercise 1. Study in this general case the dynamic properties of the system of difference equations $\left(c_{h}, d_{h}\right)$ and provide a generalization of the results shown in the Exercise $\mathrm{N}^{\circ} 05$. In addition, derive the equation of the "long rate" $R(t,+\infty)$.

Exercise $\mathrm{N}^{\circ} 08$ [Gaussian $\operatorname{AR}(p)$ Factor Dynamics under the S-Forward probability].
Let us now consider our discrete-time univariate Gaussian term structure model, in which the factor x_{t+1} has an historical dynamics described by a Gaussian $\operatorname{AR}(p)$ process, and the one-period SDF has the exponential-affine form mentioned in the Exercise 1. Calculate the S-Forward dynamics of x_{t+1}, conditionally to $\underline{x_{t}}$.

Exercise ${ }^{\circ} 09$ [Zero-Coupon Bond Return Process under the S-Forward probability].

Prove that, under the S-Forward probability $\mathbb{Q}^{(S)}$, the one-period geometric zero-coupon bond return process is described by the relation:

$$
\rho(t+1, T)=r_{t}-\frac{1}{2} \omega(t+1, T)^{2}+\omega(t+1, T) \omega(t+1, S)-\omega(t+1, T) \xi_{t+1}
$$

with a one-period risk premium given by :

$$
\lambda_{t}^{\mathbb{Q}^{(S)}}(T)=\log E_{t}^{\mathbb{Q}^{(S)}} \exp [\rho(t+1, T)]-r_{t}=\omega(t+1, T) \omega(t+1, S) .
$$

Exercise $\mathrm{N}^{\circ} 10$ [No-arbitrage restrictions for the short rate and spread].

Let us assume to have a bivariate Gaussian $\operatorname{VAR}(1)$ Factor-Based term structure models, and let us assume that the factor x_{t} be given by $x_{t}=\left(r_{t}, S_{t}\right)^{\prime}$ where $r_{t}=R(t, t+1)$ is the yield with the shortest maturity in our data base (it is the short rate) and where $S_{t}=R_{t}-r_{t}$ is the spread between the long rate R_{t} (the yield with the longest maturity in our data base) and the short rate. This Gaussian VAR(1) ATSM can be summarized as follows:

$$
\begin{array}{ll}
x_{t+1} & \left.=\nu+\Phi x_{t}+\Sigma \varepsilon_{t+1}, \varepsilon_{t+1} \sim \mathcal{N}\left(0, I_{2}\right) \text { (under } \mathbb{P}\right) \\
M_{t, t+1} & =\exp \left[-\beta-\alpha^{\prime} x_{t}+\Gamma_{t}^{\prime} \varepsilon_{t+1}-\frac{1}{2} \Gamma_{t}^{\prime} \Gamma_{t}\right],(\mathrm{SDF}) \\
\Gamma_{t} & =\Gamma\left(x_{t}\right)=\left(\gamma_{o}+\gamma x_{t}\right) \\
R(t, t+h) & =-\frac{C_{h}^{\prime}}{h} x_{t}-\frac{D_{h}}{h} \\
C_{h} & =-\alpha+(\Phi+\Sigma \gamma)^{\prime} C_{h-1}=-\alpha+\Phi^{*^{\prime}} C_{h-1}, \\
D_{h} & =-\beta+C_{h-1}^{\prime}\left(\nu+\Sigma \gamma_{o}\right)+\frac{1}{2} C_{h-1}^{\prime}\left(\Sigma \Sigma^{\prime}\right) C_{h-1}+D_{h-1} \\
C_{0}=0, D_{0}=0
\end{array}
$$

Write the complete set of no-arbitrage restrictions that this model has to satisfy.

