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Exercise N◦ 01 [Replicating strategies in the one-period model].

We have a one-period financial market {S(0),S} where S(0) ∈ Rd+1
+ , S(0) = [S0(0), S1(0), . . . ,

Sd(0)]′, is the date t = 0 vector of basic asset prices. S denotes the [(d+ 1)×N ]-matrix of payoffs.

a) k = rank(S′) = N = d+ 1 (complete markets without redundant assets).

S is a square full-rank matrix and therefore the inverse (S′)−1 exists. The system y = S′ϕ
admits always a unique replicating strategy (i.e. hedging portfolio) ϕ = (S′)−1y for any
y ∈ Rd+1.

b) k = rank(S′) = N < d+ 1 (complete markets with redundant assets).

Let us divide the payoff matrix S′ into a (N,N)-matrix S1
′ of linearly independent payoffs

and a (N, d+ 1−N)-matrix S2
′ of redundant payoffs. We have S′ = (S1

′ : S2
′).

Let us also divide the portfolio ϕ ∈ Rd+1 in a N -dimensional vector ϕ1 associated to the
linearly independent assets and a (d+1−N)-dimensional vector ϕ2 associated to the linearly
dependent assets. We have ϕ = (ϕ′1, ϕ

′
2)′.

Given that S1
′ is a square matrix of full rank (k = rank(S1

′) = N), then (S1
′)−1 exists.

Moreover, given that S2
′ contains the (redundant) payoffs that can be replicated by the

(non-redundant) payoffs in S1
′, there exists a (N, d+ 1−N) matrix C such that S2

′ = S1
′C.

For any payoff y ∈ RN we can write y = S′ϕ = S1
′ϕ1 +S2

′ϕ2 = S1
′[ϕ1 +Cϕ2] and, given that

(S1
′)−1 exists we have that the formula giving the replicating strategy is ϕ1 = (S1

′)−1 y−Cϕ2.
We observe that the implementation of that strategy requires first to (arbitrarily) choose (to
fix) the portfolio ϕ2 of redundant assets. This means that we have (d+1−N) free parameters
indicating the multiplicity of the replicating strategies ϕ1 for the same payoff y.

c) k = rank(S′) = d+ 1 < N (incomplete markets without redundant assets).

Given that k = rank(S′) = d+1, then (SS′)−1 exists and the right inverse of S is well defined.
For a given payoff y ∈ RN let us, first, multiplying (on the left) system y = S′ϕ by S and
then by (SS′)−1. We obtain ϕ = L(S′)y, where L(S′) = (SS′)−1S is the transposed of the
right inverse of S.

The portfolio ϕ = L(S′)y is a solution of the modified system Sy = SS′ϕ and not (in general)
of the original system y = S′ϕ (we are interested in).
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Now, if rank(S′) = rank(S′ : y), the portfolio ϕ = L(S′)y is the unique replicating strategy
for the payoff y. This means that, we have a (unique) solution when the payoff y ∈ RN is
redundant or, in other words, when y ∈M(S) (when the payoff belongs to the asset span).

If the payoff y ∈ Rd+1 and the basic assets are linearly independent (y /∈ M(S)), then
ϕ = L(S′)y is not a solution of the original system y = S′ϕ and we are not able to build a
replicating strategy for y.

d) k = rank(S′) < d+ 1 and k < N (incomplete markets with redundant assets).

Let us divide the payoff matrix S′ into a (N, k)-matrix S̄′1 of linearly independent payoffs and
a (N, d+ 1− k)-matrix S̄′2 of redundant payoffs. We have S′ = (S̄′1 : S̄′2).

Let us also divide the portfolio ϕ ∈ Rd+1 in a k-dimensional vector ϕ̄1 associated to the
linearly independent assets and a (d+ 1− k)-dimensional vector ϕ̄2 associated to the linearly
dependent assets. We have ϕ = (ϕ̄′1, ϕ̄

′
2)′.

The matrix S̄′1 is not square but (S̄1S̄′1) is invertible. Moreover, given that S̄′2 contains the
(redundant) payoffs that can be replicated by the (non-redundant) payoffs in S̄′1, there exists
a (N, d+ 1− k) matrix C̄ such that S̄′2 = S̄′1C̄.

For a given payoff y ∈ RN we can, first, write the original system as y = S′ϕ = S̄′1ϕ̄1 +S̄′2ϕ̄2 =
S̄′1[ϕ̄1 + C̄ϕ̄2] and, then, we can considers the associated modified system S̄1y = S̄1S̄′1[ϕ̄1 +
C̄ϕ̄2].

Now, given that (S̄1S̄′1)−1 exists, we have that the formula giving the solution to the modified
system is ϕ̄1 = (S̄1S̄′1)−1S̄1 y− C̄ϕ̄2 = L(S̄′1)y− C̄ϕ̄2. We observe that the implementation of
that strategy requires first to (arbitrarily) choose (to fix) the portfolio ϕ̄2 of redundant assets.
This means that we have (d+ 1− k) free parameters indicating the multiplicity of solutions
ϕ̄1 (for the modified system).

Now, if rank(S′) = rank(S′ : y), the portfolio ϕ̄1 = L(S̄′1)y−C̄ϕ̄2 identifies the infinitely many
replicating strategies for the payoff y. This means that, we have a (non unique) solution when
the payoff y ∈ RN is redundant or, in other words, when y ∈M(S) (when the payoff belongs
to the asset span generated by the payoff in S̄1).

If the payoff y ∈ RN and the payoffs in S̄1 are linearly independent (y /∈ M(S)), then ϕ̄1

is not a solution of the original system y = S′ϕ and the replicating strategy for y does not
exists.

Exercise N◦ 02 [Complete financial markets].

If the financial market {S(0),S} is complete, then k = rank(S′) = N and we can consider two
possible cases depending on the presence or not of redundant assets, given that we always have
k ≤ (d+1). This means that we are in a situation where k = N ≤ (d+1). This condition guarantee
the existence of the left inverse of S, namely L(S) = (S′S)−1 S′.

If the payoff matrix S admits left inverse L(S) = (S′S)−1 S′, then we have (d+ 1) ≥ N and the N
columns of S are linearly independent. Thus, we have N = rank(S) and therefore the market is
complete.
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Exercise N◦ 03 [The Law of One Price].

The law of one price (LOP) states that if S′ϕ∗ = S′ϕ∗∗, with ϕ∗ 6= ϕ∗∗ and ϕ∗, ϕ∗∗ ∈ Rd+1, then
Sϕ∗(0) = Sϕ∗∗(0).

a) If the LOP holds then q(.) is single-valued. We have to prove that if the LOP holds then q(.)
is a linear function (of the asset span). To prove the linearity let us consider two payoffs y∗ and
y∗∗ both in the asset span. We have therefore y∗ = S′ϕ∗, ϕ∗ ∈ Rd+1 with given price Sϕ∗(0),
and y∗∗ = S′ϕ∗∗, ϕ∗∗ ∈ Rd+1 with given price Sϕ∗∗(0). By definition of payoff pricing function
q(y∗) = Sϕ∗(0) (the price of the portfolio generating y∗) and q(y∗∗) = Sϕ∗∗(0) (the price of the
portfolio generating y∗).

Now, let us take arbitrary real numbers λ1, λ2 ∈ R. It is clear that the payoff (λ1y
∗ + λ2y

∗∗) can
be generated by the strategy (λ1ϕ

∗+λ2ϕ
∗∗): S′[λ1ϕ

∗+λ2ϕ
∗∗] = λ1S

′ϕ∗+λ2S
′ϕ∗∗ = λ1y

∗+λ2y
∗∗.

The value (price) of that portfolio is λ1Sϕ∗(0) + λ2Sϕ∗∗(0). Given that q(.) is single-valued, for
any given λ1, λ2 ∈ R, the price of the payoff (λ1y

∗ + λ2y
∗∗) is always given by q(λ1y

∗ + λ2y
∗∗) =

λ1Sϕ∗(0) + λ2Sϕ∗∗(0), that is the value of the replicating portfolio. The right-hand side of the last
relation equals (λ1q(y

∗) + λ2q(y
∗∗)), and thus q(.) is linear.

b) We have to prove that, if the payoff pricing function q(.) is linear then the LOP holds. Let us
consider the two payoffs y∗ and y∗∗ both in the asset span. By linearity we have: q(λ1y

∗+λ2y
∗∗) =

λ1q(y
∗) + λ2q(y

∗∗) = λ1Sϕ∗(0) + λ2Sϕ∗∗(0), for any λ1, λ2 ∈ R. In particular, for λ1 = λ2 = 0, we
have q(0) = 0.

Now, let us assume that y∗ = S′ϕ∗ and y∗∗ = S′ϕ∗∗ are such that S′ϕ∗ = S′ϕ∗∗. This means
that y∗ − y∗∗ = S′(ϕ∗ − ϕ∗∗) = 0 (a zero payoff). By linearity, we can always write q(y∗ − y∗∗) =
q(y∗) − q(y∗∗) = Sϕ∗(0) − Sϕ∗∗(0). At the same time we have q(y∗ − y∗∗) = q(0) = 0. Thus
Sϕ∗(0)− Sϕ∗∗(0) = 0, i.e. Sϕ∗(0) = Sϕ∗∗(0), and the LOP holds.

Exercise N◦ 04 [Pricing payoffs in the asset span].

a) Let us consider an incomplete market without redundant assets (k = rank(S′) = d+ 1 < N), a
payoff y ∈ M(S) and the associated system S′ϕ = y. Given that rank(S′) = d + 1 we have that
(SS′)−1 exists and the right inverse of S is well defined : R(S) = S′(SS′)−1. This means that we
also have (R(S))′ = (SS′)−1S = L(S′). Thus, the replicating strategy is ϕ = L(S′)y = (SS′)−1Sy
which a solution of the original system being y ∈M(S).

Now, the price of the payoff y ∈ M(S) is the value of the replicating portfolio an therefore q(y) =
S(0)′ϕ = S(0)′L(S′)y = S(0)′(SS′)−1Sy = y′R(S)S(0) and the pricing formula is proved.

b) We have an incomplete market with redundant assets (k < d+ 1, k < N). Let us denote with S̄
the (k,N) payoff matrix of the no redundant assets and with S̄(0) the vector of these k asset prices.
Given that rank(S′) = k we have that (S̄S̄′)−1 exists and the right inverse of S̄ is well defined :
R(S̄) = S̄′(S̄S̄′)−1. This means that we also have (R(S̄))′ = (S̄S̄′)−1S̄ = L(S̄′). Following the same
steps as above, we find q(y) = y′R(S̄) S̄(0) = S̄(0)′ L(S̄ ′) y and the pricing formula is proved.
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Exercise N◦ 05 [First Fundamental Theorem of Asset Pricing].

We have to prove that in the financial market {S(0),S} there are no arbitrage opportunities if and
only if there exists a strictly positive vector of state prices q(ad) ∈ RN++ such that:

S(0) = S q(ad) .

a) If there exists a (not unique in general) vector q(ad) ∈ RN++ such that S(0) = S q(ad), then for
any portfolio ϕ ∈ Rd+1 we have Sϕ(0) = ϕ′S(0) = ϕ′S q(ad). Now, if ϕ′S ≥ 0 then ϕ′S(0) ≥ 0
given that q(ad) ∈ RN++. If ϕ′S > 0 then ϕ′S(0) > 0 given that q(ad) ∈ RN++. Thus, the absence of
arbitrage opportunity (AAO) principle is satisfied.

b) We have to prove that, given the financial market {S(0),S}, under the AAO principle, then
there exists a (not unique in general) vector q(ad) ∈ RN++ such that S(0) = S q(ad).

Let M(S(0),S) the market span defined as:

M(S(0),S) =
{

(x, y′)′ , x ∈ R , y ∈ RN : x = −S(0)′ϕ , y = S′ϕ ,ϕ ∈ Rd+1
}
⊆ RN+1 .

Let us introduce the positive orthant of RN+1

RN+1
+ =

{
z ∈ RN+1 : zj ≥ 0 ∀1 ≤ j ≤ N + 1 ;∃ j : zj > 0

}
,

and the unit simplex of RN+1: ∆N :=
{
z ∈ RN+1

+ :
∑N+1

j=1 zj = 1
}

.

The AAO principle implies that all the elements of the vector (x, y′)′ ∈ M(S(0),S) cannot
be positive. Thus, if we assume that the market satisfies the AAO principle, then we have
M(S(0),S)

⋂
RN+1

+ = {0}. This is also true for any compact subset of RN+1
+ , namely the unit

simplex of RN+1. Thus, we also have M(S(0),S)
⋂

∆N = φ. This result naturally suggest (for
our purpose) the use of the following:

Theorem (The Minkowski Separation Theorem): Let A and B be two non-empty convex
subsets of Rs, where A is closed, B is compact and A

⋂
B = φ. Then, there exists a vector of

non-zero coefficients ψ = (ψ1, . . . , ψs)
′ and two distinct numbers b1 and b2 such that:

∀a ∈ A , ∀b ∈ B , a′ψ ≤ b1 < b2 ≤ b′ψ .

In other words, there exists a non-zero linear functional F : Rs 7→ R, F (c) = c′ψ with ψ 6= 0, such
that:

∀a ∈ A , ∀b ∈ B , F (a) ≤ b1 < b2 ≤ F (b) .

In our problemM(S(0),S) is a closed and convex subset of RN+1 and ∆N is a compact and convex
subset of RN+1. The Minkowski Separation Theorem guarantee the existence of a vector of non-zero
coefficients ψ = (ψ0, . . . , ψN )′ ∈ RN+1 and two distinct numbers such that:

∀α ∈M(S(0),S) , ∀σ ∈ ∆N , F (α) = α′ψ ≤ b1 < b2 ≤ σ′ψ = F (σ) .
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Given that 0 ∈ M(S(0),S) and 0 /∈ ∆N , we have: F (0) = 0 ≤ b1 < b2 ≤ σ′ψ = F (σ) for all
σ ∈ ∆N , thus we find b1 ≥ 0. Now if we move along the unit simplex boundaries and we successively
choose the vectors ej = (0, . . . , 0, 1, 0, . . . , 0)′ ∈ ∆N of the canonical basis in RN+1, then we find
0 ≤ b1 < b2 ≤ ψj for all j ∈ {0, . . . , N}. Thus, we have found a vector ψ ∈ RN+1

++ . Without loss of

generality, let us assume ψ0 = 1 and let us denote ψ = (1, ψ̄′)′ = (1, ψ1, . . . , ψN ) ∈ RN+1
++ .

Now, taking into account the form of the elements α ∈M(S(0),S), we can write α0 +
∑N

j=1 αjψj ≤
0. This inequality can be written as (−S(0) + Sψ̄)′ϕ ≤ 0. Hence, S(0) = Sψ̄ (any vector ψ =
(1, ψ̄′)′ ∈ RN+1

++ is orthogonal to M(S(0),S)) and ψ̄ = q(ad) ∈ RN++ is our vector of positive state
prices.

Exercise N◦ 06.

(i) The price of the risk-free bond is S0(t = 0) =
5∑
j=1

qadj = 0.9803 and its continuously compounded

interest rate is r = ln(1/0.9803) = 0.0199.

(ii) The any risk-neutral qj , for any j ∈ {1, . . . , 5}, is given by qj =
qadj∑5
j=1 q

ad
j

. This means that

q1 = 0.1255
0.9803 = 0.1280, q2 = 0.2500, q3 = 0.373, q4 = 0.062 and q5 = 0.187.

(iii) The price of the new asset is given by Sα(t = 0) = qad
′
Sα(t = 1) = 3.7375.

Exercise N◦ 07.

i) Given that k = rank(S′) = 3 = N , where N denotes the number of states of nature, then the
market is complete. We can equivalently say that the market is complete because S admits left
inverse L(S) = (S′S)−1 S′.

ii) Given that k = rank(S′) = 3 = N < d+ 1 = 4, where d+ 1 = 4 denotes the number of assets,
in this market we have d + 1 −N = 1 redundant asset, that is an asset with a payoff that can be
replicated by a linear combination of the three other assets. This result can be formally motivated
by the fact that the payoff matrix S has only left inverse L(S) = (S′S)−1 S′.

iii) The first fundamental theorem of asset pricing tell us that the financial market {S(0),S} is
arbitrage-free if and only if there exists a vector qad = (qad1 , qad2 , qad3 )′ ∈ R3

++ of state prices such
that S(0) = Sqad. Given that the market is complete, then the unique solution is q∗ = qad =
L(S) S(0) = (0.2, 0.6, 0.2)′. We have q∗ ∈ R3

++ and thus the market is arbitrage-free.
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Exercise N◦ 08.

i) the (continuously compounded) short rate return of the risk-free asset is given by r = ln(3/S0(0)) =
ln(3/2) = 0.4055.

ii) The solution to S(0) = S qad is:

qad1 =
1

3
− qad4 ,

qad2 =
1

6
,

qad3 =
1

6
,

and qad4 arbitrary. From the first fundamental theorem of asset pricing we know that there is no
arbitrage if and only if qad ∈ R4

++. This condition is clearly satisfied for any qad4 ∈ ]0, 1
3 [. Thus, for

any qad = (qad1 , qad2 , qad3 , qad4 )′ =

(
1

3
− qad4 ,

1

6
,
1

6
, qad4

)′
, with qad4 ∈ ]0, 1

3 [, the market is arbitrage free

by the first fundamental theorem of asset pricing.

iii) From the second fundamental theorem of asset pricing we know that, an arbitrage free market
is complete if and only if the solution qad ∈ R4

++ to S(0) = S qad is unique.

We have seen from ii) that this is not the case given that any qad = (qad1 , qad2 , qad3 , qad4 )′ =

(
1

3
− qad4 ,

1

6
,

1

6
, qad4

)′
, with qad4 ∈ ]0, 1

3 [, is in R4
++. Thus, the market is not complete. We can also say that the

market is not complete given that we have N = 4 states of the nature and only d+ 1 = 3 assets in
the market.

iv) We know that er = 1/
∑4

j=1 q
ad
j , and thus qad0 :=

∑4
j=1 q

ad
j = 2/3. We also know that any

element qj in the 4-dimensional vector q = (q1, q2, q3, q4)′ of risk-neutral probabilities is given by
qj = qadj /q

ad
0 . In our case, this implies that the risk-neutral probabilities are:

q1 =
1

2
− q4 , q2 =

1

4
, q3 =

1

4
,

and q4 ∈ ]0, 1
2 [ arbitrary.

v) The no-arbitrage prices of this new asset are:

S3(0) = 1× qad1 + 2× qad2 + 0× qad3 + 1× qad4

=
1

3
− qad4 +

1

3
+ qad4 =

2

3
.

We are in a incomplete market, and this new asset has a unique no-arbitrage price, that is, it is the

same for any qad = (qad1 , qad2 , qad3 , qad4 )′ =

(
1

3
− qad4 ,

1

6
,
1

6
, qad4

)′
, with qad4 ∈ ]0, 1

3 [. This means that

this new asset is redundant.
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Exercise N◦ 09 [Numeraire invariance of the self-financing trading strategy].

Let us first prove the result for any numeraire Nt. Nt is, by definition, a non-dividend-paying price
process and therefore is strictly positive for all t ∈ {0, . . . , T}. In particular, we have N0 = 1. Given
the positivity of Nt, we have the following equivalence, which implies the claim:

ϕ(t)′S(t) = ϕ(t+ 1)′S(t) , t ∈ {1, . . . , T − 1} ,

⇔ ϕ(t)′
S(t)

N(t)
= ϕ(t+ 1)′

S(t)

N(t)
, t ∈ {1, . . . , T − 1} .

The sentence of the exercise is proved assuming Nt = S0(t) = exp(r0 + . . .+ rt−1).

Exercise N◦ 10 [Discounted value process and self-financing trading strategy].

a) Let us assume that ϕ ∈ Φ. Then, using the definition of self-financing trading strategy
(ϕ(t)′S(t) = ϕ(t + 1)′S(t)), the numeraire invariance theorem (see exercise 6) and the factor that
S0(0) = 1 we have:

S̃ϕ(t) = S̃ϕ(0) + G̃ϕ(t)

= Sϕ(0) + G̃ϕ(t)

= ϕ(1)′S(0) +

t∑
τ=1

ϕ(τ)′(S̃(τ)− S̃(τ − 1))

= ϕ(1)′S̃(0) + ϕ(t)′S̃(t) +

t−1∑
τ=1

(ϕ(τ)− ϕ(τ + 1))′S̃(τ)− ϕ(1)′S̃(0)

= ϕ(t)′S̃(t) ,

and the result is proved.

b) Let us assume now that S̃ϕ(t) = Sϕ(0)+G̃ϕ(t) holds true for all t ∈ {0, . . . , T}. By the numeraire
invariance theorem it is enough to show the discounted version of ϕ(t)′S(t) = ϕ(t+ 1)′S(t), that is
ϕ(t)′S̃(t) = ϕ(t+ 1)′S̃(t). Summing up to t = 2 the relation S̃ϕ(t) = Sϕ(0) + G̃ϕ(t) we have:

ϕ(2)′S̃(2) = ϕ(1)′S̃(0) + ϕ(1)′(S̃(1)− S̃(0)) + ϕ(2)′(S̃(2)− S̃(1)) .

Subtracting ϕ(2)′S̃(2) on both sides gives ϕ(2)′S̃(1) = ϕ(1)′S̃(1) which is ϕ(t)′S̃(t) = ϕ(t+ 1)′S̃(t)
for t = 1. Proceeding by induction we show ϕ(t)′S̃(t) = ϕ(t + 1)′S̃(t) for t ∈ {2, . . . , T − 1} as
required.
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Exercise N◦ 11 [Discounted value process and equivalent martingale measure].

We have to prove that, for a given EMM Q (thus, we are under the AAO principle) and ϕ ∈ Φ any
self-financing strategy, then the discounted value process S̃ϕ(t) is a Q-martingale with respect to
the filtration F.

By the self-financing property of ϕ, we have S̃ϕ(t) = Sϕ(0) + G̃ϕ(t) for all t ∈ {0, . . . , T}. This
result implies:

S̃ϕ(t+ 1)− S̃ϕ(t) = G̃ϕ(t+ 1)− G̃ϕ(t) = ϕ(t+ 1)′(S̃(t+ 1)− S̃(t)) .

Now, under the AAO S̃(t) is a Q-martingale and thus EQ[S̃(t+ 1)− S̃(t)] = 0. This result implies
that EQ[S̃ϕ(t + 1) − S̃ϕ(t)] = 0 and therefore S̃ϕ(t) is said to be a martingale transform of S̃(t)
by ϕ, being the sequence ϕ(t+ 1) predictable given Ft. This means, by the Martingale Transform
Lemma [see Bingham and Kiesel (2004), Lemma 3.4.1], that S̃ϕ(t) is a Q-martingale with respect
to the filtration F.
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