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Exercise N° 01 [Replicating strategies in the one-period model].

We have a one-period financial market {S(0),S} where S(0) € R, S(0) = [Sp(0), S1(0),...,
Sq4(0)]', is the date ¢ = 0 vector of basic asset prices. S denotes the [(d+ 1) x N]-matrix of payoffs.

a)

k =rank(S") = N = d+ 1 (complete markets without redundant assets).

S is a square full-rank matrix and therefore the inverse (S’)~! exists. The system y = S'p
admits always a unique replicating strategy (i.e. hedging portfolio) ¢ = (S’)~ly for any
y € RA+1

k =rank(S") = N < d+1 (complete markets with redundant assets).

Let us divide the payoff matrix S’ into a (N, N)-matrix S;” of linearly independent payoffs
and a (N,d + 1 — N)-matrix S’ of redundant payoffs. We have S’ = (S1’ : S2’).

Let us also divide the portfolio ¢ € R4 in a N-dimensional vector ¢; associated to the
linearly independent assets and a (d+ 1 — N)-dimensional vector g associated to the linearly
dependent assets. We have ¢ = (¢], ¢5)".

Given that Sy’ is a square matrix of full rank (k = rank(Sy’) = N), then (S1’)~! exists.
Moreover, given that Sg’ contains the (redundant) payoffs that can be replicated by the
(non-redundant) payoffs in S1’, there exists a (N,d+ 1 — N) matrix C such that S’ = S;'C.

For any payoff y € RY we can write y = S’ = S1’p1 + 82’2 = S1’[p1 +Cs] and, given that
(S1")~! exists we have that the formula giving the replicating strategy is ¢1 = (S1’) ™! y—Co.
We observe that the implementation of that strategy requires first to (arbitrarily) choose (to
fix) the portfolio ¢y of redundant assets. This means that we have (d+1— N) free parameters
indicating the multiplicity of the replicating strategies ¢ for the same payoff y.

k =rank(S") =d+1 < N (incomplete markets without redundant assets).

Given that k = rank(S’) = d+1, then (SS’)~! exists and the right inverse of S is well defined.
For a given payoff y € RY let us, first, multiplying (on the left) system y = S’ by S and
then by (SS')~'. We obtain ¢ = L%y, where L5 = (SS')~!S is the transposed of the
right inverse of S.

The portfolio ¢ = L)y is a solution of the modified system Sy = SS’¢ and not (in general)
of the original system y = S’y (we are interested in).



Now, if rank(S’) = rank(S’ : y), the portfolio ¢ = L)y is the unique replicating strategy
for the payoff y. This means that, we have a (unique) solution when the payoff y € R¥ is
redundant or, in other words, when y € M(S) (when the payoff belongs to the asset span).

If the payoff y € R and the basic assets are linearly independent (y ¢ M(S)), then
¢ = L9y is not a solution of the original system y = S’¢ and we are not able to build a
replicating strategy for y.

d) k=rank(S’) <d+1 and k < N (incomplete markets with redundant assets).

Let us divide the payoff matrix S’ into a (IV, k)-matrix S| of linearly independent payoffs and
a (N,d + 1 — k)-matrix S} of redundant payoffs. We have S’ = (S} : S}).

Let us also divide the portfolio ¢ € R4 in a k-dimensional vector @; associated to the
linearly independent assets and a (d + 1 — k)-dimensional vector @y associated to the linearly
dependent assets. We have ¢ = (¢}, ¢5)".

The matrix S is not square but (S1S}) is invertible. Moreover, given that S, contains the
(redundant) payoffs that can be replicated by the (non-redundant) payoffs in S, there exists
a (N,d+ 1 — k) matrix C such that S5, = S/ C.

For a given payoff y € RY we can, first, write the original system as y = S'¢ = S| @1 +Sh@s =
%& [¢1 + C@2] and, then, we can considers the associated modified system S1y = S1S[¢1 +
Cgal.

Now, given that (S1S}) ! exists, we have that the formula giving the solution to the modified
system is @1 = (S1S)7!1S1y - Cpa = LDy — C@2. We observe that the implementation of
that strategy requires first to (arbitrarily) choose (to fix) the portfolio @9 of redundant assets.
This means that we have (d + 1 — k) free parameters indicating the multiplicity of solutions
@1 (for the modified system).

Now, if rank(S") = rank(S’ : y), the portfolio g; = L(°1)y — @, identifies the infinitely many
replicating strategies for the payoff y. This means that, we have a (non unique) solution when
the payoff 5 € RY is redundant or, in other words, when y € M(S) (when the payoff belongs
to the asset span generated by the payoff in Sy).

If the payoff y € RY and the payoffs in Sy are linearly independent (y ¢ M(S)), then @;
is not a solution of the original system y = S’y and the replicating strategy for y does not
exists.

Exercise N° 02 [Complete financial markets].

If the financial market {S(0),S} is complete, then k = rank(S’) = N and we can consider two
possible cases depending on the presence or not of redundant assets, given that we always have
k < (d+1). This means that we are in a situation where k = N < (d+1). This condition guarantee
the existence of the left inverse of S, namely L) = (S/S)~1 /.

If the payoff matrix S admits left inverse L(S) = (8/S)~' S/, then we have (d +1) > N and the N
columns of S are linearly independent. Thus, we have N = rank(S) and therefore the market is
complete.



Exercise N° 03 [The Law of One Price].

The law of one price (LOP) states that if S'¢* = S'¢**, with ¢* # ©*™* and *, ©** € R then
Se=(0) = Sp=(0).

a) If the LOP holds then ¢(.) is single-valued. We have to prove that if the LOP holds then ¢(.)
is a linear function (of the asset span). To prove the linearity let us consider two payoffs y* and
y*™* both in the asset span. We have therefore y* = S'¢*, p* € R4 with given price Se+(0),
and y** = S’'p**, p** € R with given price S+ (0). By definition of payoff pricing function
q(y*) = Sy+(0) (the price of the portfolio generating y*) and ¢(y**) = Sy (0) (the price of the
portfolio generating y*).

Now, let us take arbitrary real numbers A\j, Ay € R. It is clear that the payoff (A1y* + \ay™) can
be generated by the strategy (A1p* + Xo™): S'[A1p* + Aa™] = MS'¢* + XaS' 0™ = A\y* + Aay™.
The value (price) of that portfolio is A1 Sy« (0) + A2Sy++(0). Given that ¢(.) is single-valued, for
any given A1, A2 € R, the price of the payoff (A\y* 4+ Aoy**) is always given by q(Ay* + Aoy™) =
A8+ (0) + A2Sy++(0), that is the value of the replicating portfolio. The right-hand side of the last
relation equals (A1g(y*) + A2q(y*™*)), and thus ¢(.) is linear.

b) We have to prove that, if the payoff pricing function ¢(.) is linear then the LOP holds. Let us
consider the two payoffs y* and y** both in the asset span. By linearity we have: g(Ay* + \oy™) =
AMq(y*) + Aaq(y*™*) = AiSp+(0) + A2Sp=+(0), for any A, A2 € R. In particular, for A\; = Ay = 0, we
have ¢(0) = 0.

Now, let us assume that y* = S'¢* and y** = S'©** are such that S'¢* = S'¢**. This means

that y* — y*™* = S/( * ) 0 (a zero payoff). By linearity, we can always write ¢(y* — y**) =
q(y*) — qly™) = ( ) S (0 ) At the same time we have ¢(y* — y*™*) = ¢(0) = 0. Thus
Sp+(0) = S (0) =0, i.e. ( ) = S,++(0), and the LOP holds.

Exercise N° 04 [Pricing payoffs in the asset span].

a) Let us consider an incomplete market without redundant assets (k = rank(S’) =d+1 < N), a
payoff y € M(S) and the associated system S’¢ = y. Given that rank(S’) = d 4+ 1 we have that
(SS’)~! exists and the right inverse of S is well defined : R(®) = §/(SS’)~!. This means that we
also have (R(®)) = (SS)7'S = L"), Thus, the replicating strategy is ¢ = L5y = (SS')~1Sy
which a solution of the original system being y € M(S).

Now, the price of the payoff y € M(S) is the value of the replicating portfolio an therefore ¢(y) =
5(0)'p = S(0) LSy = §(0)'(SS') 1Sy = 3’ R S(0) and the pricing formula is proved.

b) We have an incomplete market with redundant assets (k < d+1, k < N). Let us denote with S
the (k, V) payoff matrix of the no redundant assets and with S(0) the vector of these k asset prices.
Given that rank(S’) = k we have that (SS’)~! exists and the right inverse of S is well defined :
R®) = §/(S§")~!. This means that we also have (R(®))" = (S§)~1S = L(*"). Following the same
steps as above, we find ¢(y) = v/ R®) §(0) = §(0)' L®") 5 and the pricing formula is proved.



Exercise N° 05 [First Fundamental Theorem of Asset Pricing].

We have to prove that in the financial market {S(0), S} there are no arbitrage opportunities if and
only if there exists a strictly positive vector of state prices ¢(@® ¢ Rf 1 such that:

5(0) = S ¢led

a) If there exists a (not unique in general) vector ¢(* € RY, such that S(0) = S ¢®, then for
any portfolio ¢ € R we have S,(0) = ¢/S(0) = 'S¢, Now, if ¢S > 0 then ¢'S(0) > 0
given that ¢(@?) € RY, . If ¢/S > 0 then ¢/S(0) > 0 given that ¢(*® € RY,. Thus, the absence of
arbitrage opportunity (AAO) principle is satisfied.

b) We have to prove that, given the financial market {S(0),S}, under the AAO principle, then

there exists a (not unique in general) vector ¢ € RY, such that S(0) = S g(@®.

Let M(S(0),S) the market span defined as:
M(S5(0),8S) = {(w,y')’,m eR,yeRY : 2=-50)¢,y=S¢,p€ Rd‘H} C RNVHL,
Let us introduce the positive orthant of RV+1
R ={ze RV 1 2, > 0VI<j<N+1;3j:2 > 0},

and the unit simplex of RN*1: AN .= {Z e RV Z;V:ﬁl zj = 1}.

The AAO principle implies that all the elements of the vector (z,y") € M(S(0),S) cannot
be positive. Thus, if we assume that the market satisfies the AAO principle, then we have
M(S(0),S) N Rf“ = {0}. This is also true for any compact subset of Rf“, namely the unit
simplex of RN*!. Thus, we also have M(S(0),S) (| AN = ¢. This result naturally suggest (for
our purpose) the use of the following:

Theorem (The Minkowski Separation Theorem): Let A and B be two non-empty convex
subsets of R*, where A is closed, B is compact and A (| B = ¢. Then, there exists a vector of
non-zero coefficients ¥ = (11, ...,%;) and two distinct numbers b; and by such that:

Vae A, Vbe B, a'i <by <by <Vp.

In other words, there exists a non-zero linear functional F : R® — R, F(¢) = /¢ with ¢ # 0, such
that:

Vae A, Wbe B, Fla)<by <by<F(b).

In our problem M(S(0), S) is a closed and convex subset of R¥*! and A% is a compact and convex
subset of RVN*!. The Minkowski Separation Theorem guarantee the existence of a vector of non-zero
coefficients 1) = (g, ...,¥n) € RVT! and two distinct numbers such that:

Va € M(S(0),8), Vo e AN, F(a)=a1) < by < by < o'ty = F(o).



Given that 0 € M(S(0),S) and 0 ¢ AN, we have: F(0) = 0 < by < by < 0p = F(o) for all
o € AN, thus we find b; > 0. Now if we move along the unit simplex boundaries and we successively
choose the vectors e¢; = (0,...,0,1,0,...,0)" € AN of the canonical basis in R¥*! then we find
0 <by <by <pjforall je{0,...,N}. Thus, we have found a vector ¢ € Rﬂyil. Without loss of
generality, let us assume 1) = 1 and let us denote v = (1,¢') = (1,41, ...,¢n) € Rfil.

Now, taking into account the form of the elements o € M(S(0),S), we can write oy +Z§V:1 ajp; <
0. This inequality can be written as (—5(0) + SIZJ_),(,O < 0. Hence, S(0) = St (any vector ¢ =
(L,y") € Rfil is orthogonal to M(S(0),S)) and 3 = ¢l € RY, is our vector of positive state

prices.

Exercise N° 06.

5
(7) The price of the risk-free bond is Sp(t = 0) = Z q?d = 0.9803 and its continuously compounded
j=1

interest rate is r = 1In(1/0.9803) = 0.0199.

d
45
5 a
j=19j

(#7) The any risk-neutral ¢;, for any j € {1,...,5}, is given by ¢; = This means that

q

@1 = §Ea02 = 0.1280, g2 = 0.2500, g3 = 0.373, ¢4 = 0.062 and g5 = 0.187.

(#31) The price of the new asset is given by S, (t = 0) = ¢*¢ S, (t = 1) = 3.7375.
Exercise N° 07.

i) Given that k = rank(S’) = 3 = N, where N denotes the number of states of nature, then the
market is complete. We can equivalently say that the market is complete because S admits left
inverse L(%) = (8/'S)"!§'.

i1) Given that k = rank(S’) =3 = N < d+1 =4, where d + 1 = 4 denotes the number of assets,
in this market we have d +1 — N = 1 redundant asset, that is an asset with a payoff that can be
replicated by a linear combination of the three other assets. This result can be formally motivated
by the fact that the payoff matrix S has only left inverse L(%) = (§'S)~1§’.

i7i) The first fundamental theorem of asset pricing tell us that the financial market {S(0),S} is
arbitrage-free if and only if there exists a vector ¢%¢ = (q?d, qu,qu)’ € ]Ri ., of state prices such
that S(0) = Sq?. Given that the market is complete, then the unique solution is ¢* = ¢%¢ =
L) 5(0) = (0.2,0.6,0.2)". We have ¢* € R, and thus the market is arbitrage-free.



Exercise N° 08.

i) the (continuously compounded) short rate return of the risk-free asset is given by » = In(3/5y(0)) =
In(3/2) = 0.4055.

ii) The solution to S(0) = S ¢*¢ is:

1

Q%d - g - qé(lld )
1

di = 6 )
1

qu = 6 9

and ¢§¢ arbitrary. From the first fundamental theorem of asset pricing we know that there is no
arbitrage if and only if ¢%¢ € Ri . This condition is clearly satisfied for any qu €10, %[ Thus, for

1 411

any ¢% = (¢4, ¢3¢, ¢§%, ¢3¢y = 3= di% 55

by the first fundamental theorem of asset pricing.

!/
,q2d> , with ¢4 €]0, %[, the market is arbitrage free

ii1) From the second fundamental theorem of asset pricing we know that, an arbitrage free market
is complete if and only if the solution ¢*¢ € R% | to S(0) = S ¢*? is unique.
y - - d d ad ad ady _ (L ad 1
We have seen from i) that this is not the case given that any ¢** = (¢, ¢5%, ¢5%, ¢3*) = 376U
/

1
5 qu , with qffd €]0, %[, is in R‘_‘Hr. Thus, the market is not complete. We can also say that the

market is not complete given that we have N = 4 states of the nature and only d+ 1 = 3 assets in
the market.

iv) We know that " = 1/ Z?Zl qu, and thus ¢¢¢ := Z?:l q;-ld = 2/3. We also know that any

element ¢; in the 4-dimensional vector ¢ = (g1, ¢2,¢3,q4)" of risk-neutral probabilities is given by
qj = ?d / qu. In our case, this implies that the risk-neutral probabilities are:

1 1
Q. = 544, 2= —, 43 =

1
2 4 4’
and ¢4 €]0, 5[ arbitrary.

v) The no-arbitrage prices of this new asset are:

S3(0) = 1xgf®+2xq8%+0xqid+1x g3
_ 1 ad 1 ad_2

We are in a incomplete market, and this new asset has a unique no-arbitrage price, that is, it is the

1 11 !
same for any ¢%? = (¢4, ¢3¢, qu7 3t = (3 — qu, 5 6’qu> , with ¢3¢ €10, %[ This means that
this new asset is redundant.



Exercise N° 09 [Numeraire invariance of the self-financing trading strategy].

Let us first prove the result for any numeraire N;. Ny is, by definition, a non-dividend-paying price
process and therefore is strictly positive for all t € {0,...,T}. In particular, we have Ny = 1. Given
the positivity of Vi, we have the following equivalence, which implies the claim:

o) S(t) = et+1)S(t), te{l,...,T -1},

<:>go(t)’S((?) = <p(t+1)’]i((?, ted{l,...,T —1}.

The sentence of the exercise is proved assuming Ny = Sy(t) = exp(ro + ...+ 7r—1).
Exercise N° 10 [Discounted value process and self-financing trading strategy].

a) Let us assume that ¢ € ®. Then, using the definition of self-financing trading strategy
( (t)'S(t) = p(t+1)'S(t)), the numeraire invariance theorem (see exercise 6) and the factor that
So(0) = 1 we have:

So(t) = 5,(0) + Gyl(t)

T=1
t—1
= @(1)S(0) + () S(t) + Y _(o(7) = p(r +1))'S(r) — (1)'S(0)
T=1

and the result is proved.

b) Let us assume now that S, (t) = S,(0)+ G, (t) holds true for all t € {0, .
invariance theorem it is enough to show the discounted version of (¢ ) S(t)
o(t)'S(t) = ¢(t +1)'S(t). Summing up to t = 2 the relation S, (t) = S,(0)

,T}. By the numeraire
= p(t+1)'S(t), that is
+G

»(t) we have:
(2)'5(2) = o(1)'5(0) + (1) (S(1) = 5(0)) + 0(2)'(5(2) = 5(1)).
Subtracting ¢(2)'S(2) on both sides gives ¢(2)'S(1) = ¢(1)'S(1) which is ¢(t)’ S(t) = p(t+1)'S(t)
for ¢t = 1. Proceeding by induction we show np( ) S(t) = @(t 4+ 1)S(t) for t € {2,...,T — 1} as
required.



Exercise N° 11 [Discounted value process and equivalent martingale measure].

We have to prove that, for a given EMM Q (thus, we are under the AAO principle) and ¢ € ® any
self-financing strategy, then the discounted value process S, (t) is a Q-martingale with respect to
the filtration F.

By the self-financing property of ¢, we have Sy(t) = S,(0) + Gy (t) for all t € {0,...,T}. This
result implies:

Sp(t+1) = Su(t) = Gyt +1) — Gu(t) = ot + 1 (St+1) — S(t)).

Now, under the AAO S(t) is a Q-martingale and thus EQ[S(t + 1) — S(t)] = 0. This result implies
that EQ[S,(t + 1) — Sy(t)] = 0 and therefore S,(t) is said to be a martingale transform of S(t)
by ¢, being the sequence ¢(t + 1) predictable given F;. This means, by the Martingale Transform
Lemma [see Bingham and Kiesel (2004), Lemma 3.4.1], that S,(¢) is a Q-martingale with respect
to the filtration F.



