
Fixed Income and Credit Risk

Lecture 3

Professor Assistant Program
Fulvio Pegoraro Roberto Marfè MSc. Finance
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Outline of Lecture 3 - Part I

3.1 General Theories of Interest Rates

3.2 Expectations Hypothesis Theory

– Pure Expectations Hypothesis

– Expectations Hypothesis
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3.3 Is the Expectations Hypothesis Empirically Verified ?

3.3.1 A Gaussian VAR-based answer

3.3.2 A regression-based answer

3.3.3 Cochrane and Piazzesi (2005)

3.4 Liquidity Preference Theory

3.5 Market Segmentation Theory

3.6 Arbitrage-Free Pricing Theory
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3.1 General theories of interest rates

In this section we introduce four theories attempting to explain the term structure of

interest rates (assuming ZCB prices are observed or estimated from CB prices). The

first three are based upon general economic (useful) reasoning. The last theory, the

arbitrage-free pricing theory, is the one we will follow during the course:

� Expectations Hypothesis Theory

� Liquidity Preference Theory

� Market Segmentation Theory

� Arbitrage-Free Pricing Theory
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3.2 The Expectations Hypothesis Theory

� This is the most popular simple model of the term structure, and we distinguish

between the pure expectation hypothesis (PEH) and the expectation hypothesis

(EH).

� The PEH says that the expected excess returns on long-term over short-term

bonds are zero.

� The EH allows expected excess returns on the long-term bond to depend on the

maturity but not on time.
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Different Forms of the Pure Expectations Hypothesis

� We distinguish different forms of the PEH, according to the time horizon over

which expected excess returns are zero.

i) A first form of the PEH equates the one-period expected return of a bond with

one-period to maturity with that of a bond with (T − t) periods to maturity.

→ The one-period return on a one-period bond is known in advance to be,

(1 + Y (t, t+ 1)) = B(t+ 1, t+ 1)/B(t, t+ 1) = B(t, t+ 1)−1
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→ The expected one-period return on a bond with (T − t) periods to maturity is

(It = Investor’s information):

E[(1 +RT−t
t,t+1) | It]

⇒ This form of PEH says therefore :

(1 + Y (t, t+ 1)) = E[(1 +RT−t
t,t+1) | It]

= (1 + Y (t, T ))T−tEt[(1 + Y (t+ 1, T ))−(T−t−1)]
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ii) A second form of the PEH equates the (T − t)-period return on an (T − t)-period

bond to the expected return from rolling over one-period bonds for (T−t) periods:

(1 + Y (t, T ))T−t = Et[(1 + Y (t, t+ 1)) . . . (1 + Y (T − 1, T ))]

where (1 + Y (t, T ))T−t = (B(T, T )/B(t, T )) = B(t, T )−1

iii) If that relation holds for all residual maturities (T − t), once we consider short

forward rates (T = τ), we can also write :

(1 + Y (t, τ − 1, τ)) =
(1 + Y (t, τ))τ−t

(1 + Y (t, τ − 1))τ−1−t = Et[(1 + Y (τ − 1, τ))] .

Under this form of the PEH, the (τ−1−t)-period-ahead short forward rate equals

the expected (τ − 1− t)-period-ahead spot rate.
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iv) If the same relation holds again over all residual maturities (T − t), we have:

(1 + Y (t, T ))T−t

= (1 + Y (t, t+ 1))Et [(1 + Y (t+ 1, t+ 2)) . . . (1 + Y (T − 1, T ))]

= (1 + Y (t, t+ 1))Et [Et+1 [(1 + Y (t+ 1, t+ 2)) . . . (1 + Y (T − 1, T ))]]

= (1 + Y (t, t+ 1))Et
[
(1 + Y (t+ 1, T ))T−t−1

]
� Observe that iv) is incompatible with i) whenever interest rates are random.

Indeed, E(1/X) 6= 1/E(X).
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Implications of the Log Pure Expectations Hypothesis

� Once the PEH is formulated in logs (continuously compounded yields), it is easy

to state its implications for longer term bonds :

a) The one-period continuously compounded yield R(t, t+ 1) (which is the same as

the one-period geometric return on a one-period bond) should equal the expected

geometric return on a (T − t)-period bond held for one period [see Lecture 1,

slide 42]:

R(t, t+ 1) = Et[ln(B(t+ 1, T )/B(t, T ))] = Et[r
T−t
t,t+1]
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b) A long-term (T − t)-period yield R(t, T ) should equal the expected sum of (T − t)

successive one-period yields (i.e. returns) rolled over for (T − t) periods:

R(t, T ) =
1

T − t

T−t−1∑
i=0

Et[R(t+ i, t+ i+ 1)]

c) the (τ − 1− t)-period ahead continuously compounded short forward rate should

equal the expected one-period cont comp yield (τ − 1− t) periods ahead:

R(t, τ − 1, τ) = Et[R(τ − 1, τ)]

⇒ the cont comp short forward rate R(t, τ, τ + 1) should follow a martingale:

R(t, τ, τ + 1) = Et[R(τ, τ + 1)] = EtEt+1[R(τ, τ + 1)] = Et[R(t+ 1, τ, τ + 1)]
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� If any of the equations at a), b) and c) hold for any residual maturity and date

t, then the other equations also hold for all residual maturities and t.

� Also, if any of these equations hold for (T − t) = 2 at some date t, then the

other equations also hold for (T − t) = 2 at the same date t.

� However, a), b) and c) are not generally equivalent for particular (T − t) and t.
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The Expectations Hypothesis

� The EH theory says that (using the cont comp notation) this difference:

R(t, T )−
1

T − t

T−t−1∑
i=0

Et[R(t+ i, t+ i+ 1)] =: TP (t, T ) ,

called Term Premia of the yield R(t, T ), is constant over time and depends only

on T − t: TP (t, T ) = TP (T − t). The PEH says that TP (t, T ) = 0.

� 1
T−t

∑T−t−1
i=0 Et[R(t+ i, t+ i+ 1)] is called Expectation Component of R(t, T ) and

it is denoted EX(t, T ). This part of the yield provides information about market

expectations (forecast !) on future short rates over an horizon given by the

residual maturity T − t.
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� It is related to the expected long-run level of the short rate.

� EXS(t, T ) = EX(t, T ) − R(t, t + 1) denotes the expectation component of the

spread S(t, T ) = R(t, T ) − R(t, t + 1), and it gives information about expected

long-run variation of the short rate with respect to its actual value.

� Thus, TP (t, T ) is the amount by which the long rate (R(t, T )) exceeds the ex-

pected return from investing in a series of short-term instruments.

� It is a risk compensation required to hold a long-term instead of a short-term

debt.
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3.3 Is the Expectations Hypothesis Empirically Verified ?

3.3.1 A Gaussian VAR-based answer

� Let us calculate TP (t, T ) by means of a Gaussian VAR model giving us the

possibility to determine Et[R(t+i, t+i+1), i.e. to forecast, at t, R(t+i, t+i+1).

� Our Gaussian VAR-distributed factor is Xt = (rt, St, gt)′ (1-Q short rate, 10-year

spread, GDP growth). St = R(t, t+ 40Q)−R(t, t+ 1Q), gt = ln(GDPt/GDPt−1).

� To provide reliable forecasts we take information from both the bond market

(short rate and spread) and the macro-economy (economic activity).
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� If (Xt) is a Gaussian VAR(1) process, we assume:

Xt+1 = ν + ΦXt + εt+1 =

 ν1

ν2

ν3

+

 ϕ11 ϕ12 ϕ13

ϕ21 ϕ22 ϕ23

ϕ31 ϕ32 ϕ33

 Xt +

 ε1,t

ε2,t

ε3,t

 ,
where εt is a 3-dimensional Gaussian white noise with N (0,Ω) distribution.

� If (Xt) is a Gaussian VAR(3) process, we assume:

Xt+1 = ν + Φ1Xt + Φ2Xt−1 + Φ3Xt−2 + εt+1 .

� Let us calculate, at date t, the k-step ahead forecast (denoted Xe
t+k | t) with a

VAR(1) model:

Xe
t+k | t := Et[Xt+k] = (I3 + Φ + . . .+ Φk−1) ν + ΦkXt .
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� With a VAR(3) model, we recursively calculate the forecast:

Xe
t+k | t := Et[Xt+k] = ν + Φ1Et[Xt+k−1] + Φ2Et[Xt+k−2] + Φ3Et[Xt+k−3] ,

starting from Et[Xt+1] = ν + Φ1Xt + Φ2Xt−1 + Φ3Xt−2.

� Picture → Bold line: 10-year interest rate. Thin line: short rate. Dotted line:

model-based 10-year term premium.
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3.3.2 A regression-based answer

� What does the empirical evidence suggest about the Expectation Hypothesis ?

� Given the one-period geometric bond return r(h)
t,t+1 = ln

B(t+ 1, T )

B(t, T )
, the one-

period excess bond return is ex(h)
t+1 = r(h)

t,t+1 −R(t, t+ 1) (with h = T − t).

� We can equivalently write:

ex(h)
t+1 = −[R(t+ 1, T )−R(t, T )] (T − t− 1) + [R(t, T )−R(t, t+ 1)]

� and thus:

R(t+ 1, T )−R(t, T ) = −
1

T − t− 1
ex(h)

t+1 +
1

T − t− 1
[R(t, T )−R(t, t+ 1)]

20



� The EH states Et(ex
(h)
t+1) = 0, and to test for it we can run the following regres-

sion:

R(t+ 1, T )−R(t, T ) = φ0(h,1) + φ1(h,1)
1

T − t− 1
[R(t, T )−R(t, t+ 1)] + ut+1(h,1)

� It is also possible to prove that, given an m-period bond return (m < T − t)

r(h)
t,t+m = 1

m
ln
B(t+m,T )

B(t, T )
, with ex(h)

t+m = r(h)
t,t+m −R(t, t+m):

R(t+m,T )−R(t, T ) = φ0(h,m) + φ1(h,m)
m

T − t−m
[R(t, T )−R(t, t+m)] + u(h,m)

t+m

� These regressions are called in the literature Campbell-Shiller regressions, from

the paper by Campbell and Shiller (1991, RES).
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� If we focus on the first regression (m = 1), testing the EH means testing that

φ0(h,1) = 0 and φ1(h,1) = 1. A well known empirical feature of the U.S. yield

curves is that φ̂1(h,1) < 0, for all residual maturities and (in general) |φ̂1(h,1)|

increasing as far as h increases.

� This is called the violation of the EH Theory or EH Puzzle.

� Let us see some empirical result about φ̂1(h,1). We take the GSW (2007) data

base with quarterly observations from 1964 : Q1 to 2007 : Q2.
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h 3-Q 4-Q 8-Q 12-Q 20-Q 40-Q

φ̂1(h,1) -0.49 -0.74 -0.98 -1.20 -1.55 -2.57

st. dev. [0.28] [0.40] [0.68] [0.82] [0.93] [1.19]
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� Let us see an application to CRSP data set on the U. S. term structure of

interest rates.

� The sample covers the period from June 1964 to December 1995.

� We have 379 monthly observations for each of the nine maturities : 1, 3, 6 and

9 months and 1, 2, 3, 4 and 5 years.

� How do φ̂1(h,m) behaves ?
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Short Horizon m = 3 months m = 6 months m = 9 months

h = 6 months -0.6942 (0.2533)

h = 9 months -0.8863 (0.3238) -0.4023 (0.2429)

h = 12 months -1.3226 (0.3530) -0.7867 (0.2381) -0.4371 (0.1312)

Long Horizon m = 1 year m = 2 years m = 3 years

h = 4 years -1.8078 (0.2981) -0.8380 (0.2889) -0.0421 (0.2682)

h = 5 years -1.7470 (0.3291) -0.9720 (0.3199) -0.2378 (0.3283)

25



3.3.3 Cochrane and Piazzesi (2005)

� Cochrane and Piazzesi (2005) generalize the previous approach and consider the

following regressions:

ex(h)
t+1 = β0(h) + β1(h)R(t, t+ 1) +

5∑
j=2

βj(h) f (j)
t + ε(h)

t+1 , h ∈ {1, . . . ,5}

f (j)
t = R(t, t+ j − 1, t+ j) = ln(B(t, t+ j − 1)/B(t, t+ j)) .

� They document a ”tent shape” for the estimates of the coefficients (βj(h))5
j=1,

for h ∈ {1, . . . ,5}, t is measured in years and, thus, returns are calculated on a

yearly basis.
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� They also document that this ”tent shape” factor is not fully captured by level,

slope and curvature factors.

� It reflects a four- to five-year spread that is ignored by factor models. Indeed,

its variance is most explained by the 2nd PC (58.7%), that is the SLOPE factor

used by Campbell and Shiller (1991),...

� ...but it is also explained by the 4th PC (24.3%). It loads heavily on the four- to

five-year yield spread.
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3.4 The Liquidity Preference Theory

� Investors usually prefer short-term investments to long-term ones (they do not

like to tie their capital up for too long).

� An explanation of that theory could be the following : prices of longer-term

bonds tend to be more volatile (riskier!) than short-term bonds. Thus, investors

will only invest in more volatile securities if they have higher expected return

(often named risk premium) to offset the higher risk.

� This theory implies therefore that TP (t, T ) ↑ as T ↑ when I move from a short-

term bond investment to a long-term one.
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3.5 The Market Segmentation Theory

� Each investor has in mind, on the basis of his system of preferences, an ap-

propriate set of bonds and maturity dates that are adapted to their investment

plans.

� For example, life insurance companies require long-term bonds to match their

long-term liabilities. In contrast, banks are likely to prefer short-term bonds to

reflect the needs of their customers.

� Different group of investors, with different system of preferences and different

attitudes toward risk, act in different ways.
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� The basic form of the market segmentation theory says that there is no reason

why there should be any interaction between different groups. This means that

bond prices in different maturity bands will change in unrelated ways.

� More realistically, investor who prefer certain maturities (short/medium/long)

may shift their investments if they think that bonds in a different maturity band

are particularly cheap.

� What is implicit in that theory, and in contrast with the liquidity preference one,

the term premium TP (t, T ) is no more obliged to be an increasing function of the

time-to- maturity. Long-term investors will ask for risk premium compensation

in order to move their investment toward the short-term band of the yield curve.
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3.6 The Arbitrage-Free Pricing Theory

� The remainder of this course consider the pricing of bonds in a market which is

arbitrage-free. This theory pulls together, in a mathematically precise way, the

expectation, liquidity preference and market segmentation theory.

� It is based on the Absence of Arbitrage Opportunity (A.A.O.) principle. The

no-arbitrage bond price is the one satisfying the A.A.O. The fair price is the

no-arbitrage one.
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� R(t, T ) = 1
T−t

∑T−t−1
i=0 Et[R(t + i, t + i + 1)] + TP (t, T ) where TP (t, T ) is a time-

varying (model-dependent) function not necessarily increasing with the time-to-

maturity.

� In that course we do not consider the General Equilibrium approach as a principle

to specify the fair price. G.E. ⇒ A.A.O. but A.A.O.-based asset pricing models

are more flexible (closer to the data) that G.E.-based asset pricing models.
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Outline of Lecture 3 - Part II

3.6 No-arbitrage asset pricing theory in a one-period model

3.6.1 Outline of the main results

3.6.2 The setup of the one-period model

3.6.3 Complete and incomplete markets

3.6.4 Linear pricing: the law of one price

3.6.5 Positive pricing: the absence of arbitrage opportunity principle
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3.6.6 Risk-free payoffs and risk-neutral probabilities

3.6.7 Stochastic discount factors

3.6.8 Stochastic discount factor and change of probability measure

3.7 Arbitrage theory in a dynamic discrete-time model

3.7.1 The setup of the discrete-time model

3.7.2 Self-financing trading strategies

3.7.3 The no-arbitrage condition
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3.7.4 Attainable payoffs

3.7.5 Complete markets: uniqueness of the EMM

3.7.6 Stochastic discount factors

3.7.7 Stochastic discount factor and change of probability measure
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3.6 No-arbitrage asset pricing theory in a one-period model

3.6.1 Outline of the main results

� In this section we will study the mathematical structure of a simple one-period

model (i.e., two dates!) of a financial market.

� We will consider a finite number of assets (bonds, stocks, commodities, cur-

rencies). Their initial prices at time t = 0 (today) are known, their future prices

at time t = T are described as random variables on some probability space.

� Trading takes place at time t = 0, and t = T is the terminal date for all economic

activities.
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� We will assume (for ease of exposition) that all random variables take a finite

number of possible values (finite state space).

� The price of any asset is considered ”fair” if it satisfies the absence of arbitrage

opportunity principle: there are no trading opportunities in the market which

yield a risk-free profit.

� The absence of such arbitrage opportunities is characterized by (identified with)

the existence of an equivalent martingale measure (EMM) or a positive

stochastic discount factor (SDF).
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� Under such a measure, discounted (from t = T to t = 0) asset prices are mar-

tingales.

� Under the no-arbitrage principle, the EMM (i.e., the SDF) is unique if and

only if the financial market is complete.

� If the financial market is incomplete, under the no-arbitrage principle there exists

an infinity of EMM such that discounted asset prices are martingales.
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3.6.2 The setup of the one-period model

� The frictionless financial market contains d+ 1 traded basic assets, whose prices

at time t = 0 are denoted by the vector S(0) ∈ Rd+1
+ : S(0) = [S0(0), S1(0), . . . ,

Sd(0)]′.

� At time T , the owner of the financial asset number i receives a random payment

(the asset value at T , the asset payoff) depending on the state of the world.

� We introduce a finite probability space (Ω,F ,P), with a finite number |Ω| = N

of points (states of the world) ω1, . . . , ωj, . . . , ωN each with positive probability

pj = P({ωj}) > 0. This means that every state of the world is possible.
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� F is the set of subsets of Ω (the events that can happen in the world) on which

P(.) is defined (we can quantify how probable these events are).

� We can now write the random payment (discrete random variable) arising from

the financial asset i as the N-dimensional vector

Si(T ) = [Si(T, ω1), . . . , Si(T, ωj), . . . , Si(T, ωN)]′ ∈ RN+.

� At time t = 0 agents can buy and sell financial assets. The portfolio position

of an individual agent is given by a trading strategy ϕ ∈ Rd+1, that is a (d +

1)−dimensional vector ϕ = (ϕ0, ϕ1, . . . , ϕd)′. Here ϕi denotes the quantity of the

ith asset bought at time t = 0, which may be negative as well as positive (we

allow short positions).
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� The dynamics of our model using the trading strategy ϕ are as follows:

– at time t = 0 we invest the amount Sϕ(0) := S(0)′ϕ =
∑d

i=0ϕiSi(0)

– and at time t = T we receive the random payment S(T, ω)′ϕ =
∑d

i=0 Si(T, ω)ϕi

depending of the realized state ω of the world.

� Let us represent all the possible payoffs of the d + 1 assets in the following

[(d+ 1)×N ]-matrix S:

S =


S0(T, ω1) . . . S0(T, ωN)
S1(T, ω1) . . . S1(T, ωN)

... . . . ...
Sd(T, ω1) . . . Sd(T, ωN)


� The payoff matrix S has inverse iff it is square ((d+ 1) = N) and of full rank.
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� Neither of these properties is assumed to be true in general. However, even if S

is not square, it may have left inverse or right inverse.

� Left Inverse : it is a [N × (d + 1)]-matrix L(S) such that L(S) S = IN . L(S)

exists iff rank(S) = N , which occurs if (d + 1) ≥ N and the cols(S) are linearly

independent. We have L(S) = (S′S)−1 S′ which exists iff (S′S) is invertible.

� Right Inverse : it is a [N × (d + 1)]-matrix R(S) such that SR(S) = Id+1. R(S)

exists iff rank(S) = d + 1, which occurs if (d + 1) ≤ N and rows(S) are linearly

independent. We have R(S) = S′ (SS′)−1 which exists iff (SS′) is invertible.

� We have (L(S))′ = R(S ′) being (SS′) and (S′S) symmetric.
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� The N-dimensional vector of possible payments at t = T from the trading strat-

egy ϕ (i.e. the random payoff of the portfolio ϕ) is : Sϕ(T ) = S′ϕ.

� We define the asset span M(S) as the set of all possible payoffs that can

be generated (replicated) by trading (via ϕ) the (d + 1) basic assets. More

formally: M(S) = {y ∈ RN : y = S′ϕ ,ϕ ∈ Rd+1} ⊆ RN .

� M(S) is a linear (vector) space : its dimension is given by the number k of linearly

independent payoffs Si(T ) ⇒ k = rank(S′) = number of linearly independent rows

of S (thus, k ≤ N).
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� The k ≤ (d + 1) basic assets with linearly independent payoffs are called non-

redundant assets. The remaining (d+ 1− k) assets are called redundant (their

payoffs can be replicated by linear combination of the non-redundant ones).

� We define the market span M(S(0),S) as:

M(S(0),S) =
{

(x, y′)′ , x ∈ R , y ∈ RN : x = −S(0)′ϕ , y = S′ϕ ,ϕ ∈ Rd+1
}
⊆ RN+1.

It collects all today’s and tomorrow’s cash flows that can be achieved by trading

the basic assets. It captures the set of allocations of purchasing power through

time and states that can be achieved by some portfolio, and among which the

agents choose the best one.
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3.6.3 Complete and incomplete markets

� The financial market {S(0),S} is said to be complete if, for any possible payoff

y ∈ RN , there exists a (non necessarily unique) trading strategy ϕ ∈ Rd+1 such

that y = S′ϕ.

� We have that :

– the financial market {S(0),S} is complete iff k = rank(S′) = N (M(S) = RN);

– if k = rank(S′) < N , then {S(0),S} is said to be incomplete (M(S) ⊂ RN);

– a necessary but not sufficient condition for {S(0),S} to be complete is :

(d+ 1) ≥ N .
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� Given a complete market {S(0),S}, the replicating strategy ϕ, for a given payoff

y ∈ RN , is unique iff N = k = d+ 1. We have : ϕ = (S′)−1y for any y ∈ RN . It is

a complete market without redundant assets.

� For any y = ej = (0, . . . ,0,1,0, . . . ,0)′, j ∈ {1, . . . , N} (the jth element of the

canonical basis in RN), the associated (unique) portfolio ϕad,j = (S′)−1ej repli-

cates the so called state-j Arrow-Debreu security providing the state claim

(state-j payoff) ej.

� In that case the jth column of (S′)−1, S̃j (say), contains the unique portfolio

weights ϕad,j = (S′)−1ej := S̃j that replicates the state-j A-D security.
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� Thus, completeness of the market without redundant assets means that

there exists a unique replicating portfolio for each A-D security.

� Moreover, given that any payoff y ∈ RN (we would like to replicate) can be

written as a linear combination of A-D security payoffs, that is y =
N∑
j=1

yj × ej,

we also have that:

ϕ = (S′)−1

 N∑
j=1

yj × ej

 =
N∑
j=1

yj × ϕad,j,

that is the replicating portfolio ϕ is a linear combination of the N portfolios that

replicate the N A-D securities. Each ϕad,j is weighted by the payoff value yj

associated to the state ωj.
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� Given a complete market {S(0),S}, the replicating strategy ϕ is not unique

when N = k < d + 1 (exercise!). It is a complete market with (d + 1 − N)

redundant assets. This also means that the portfolio ϕad,j, replicating the payoff

of the state-j A-D security, always exists but is not unique (for any ωj ∈ Ω).

� Let us consider an incomplete market:

i) without redundant assets (k = d + 1 < N), any y ∈ M(S) has a unique

replicating portfolio ϕ (exercise!);

ii) with redundant assets (k < d+ 1, k < N), any y ∈M(S) has infinitely many

replicating portfolios ϕ (exercise!).
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� If the (non square) payoff matrix S has only left inverse L(S) = (S′S)−1 S′:

– N < (d+ 1) and N linearly independent rows and columns in S;

– the market is complete and we have (d+ 1−N) redundant assets.

� If the (non square) payoff matrix S has only right inverse R(S) = S′ (SS′)−1:

– we have N > (d+ 1) and (d+ 1) linearly independent rows and columns in S;

– this means that the market is incomplete and no security is redundant.
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� The payoff matrix S has both left inverse and right inverse iff S is a square

nonsingular matrix. This means that, if S admits both L(S) and R(S), then we

have a complete market without redundant assets.

� Theorem : The financial market {S(0),S} is complete if and only if S admits

left inverse, namely L(S) = (S′S)−1 S′.
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3.6.4 Linear pricing : the law of one price

� Law of One Price : two assets with the same payoff vector have the same

price. More generally, all portfolios with the same payoff have the same price.

Formally : if S′ϕ∗ = S′ϕ∗∗, with ϕ∗ 6= ϕ∗∗ and ϕ∗, ϕ∗∗ ∈ Rd+1, then Sϕ∗(0) = Sϕ∗∗(0).

Equivalently : the LOP holds iff every portfolio ϕ ∈ Rd+1 s.t. S′ϕ = 0 has

Sϕ(0) = 0.

� This is the first economic principle we introduce in order to define what a rea-

sonable (fair) price is for an asset or a portfolio. We are going to see that the

LOP leads the asset price function (of the payoff) to be a linear function of the

payoff.
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� The Payoff Pricing Function : for any vector of basic asset prices S(0), we

define a mapping q :M(S) 7→ R that assigns to each payoff in the asset span the

price of the portfolio that generate that payoff. Formally:

q(y) = {S ∈ R : S = Sϕ for some ϕ ∈ Rd+1 such that y = S′ϕ} .

� In general the mapping q(.) is a correspondence rather than a single-valued

function. If LOP holds, then q(.) is a single-valued and linear.

� Theorem : The Law of One Price holds if and only if q(.) is a linear functional

of the asset span M(S).

[Proof : exercise.]
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� Under the LOP, q(.) is single-valued and linear and therefore the price Sϕ(0) of

the portfolio ϕ is given by Sϕ(0) = S(0)′ϕ. Indeed :

Sϕ(0) = q
(
S′ϕ
)

= q

(
d∑

i=0

Si(T )ϕi

)

=
d∑

i=0

ϕi q(Si(T ))

=
d∑

i=0

ϕi Si(0)

= S(0)′ϕ .
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� Under the LOP, even in the case of incompleteness of {S(0),S}, if there are no

redundant securities (k = rank(S′) = d+ 1 < N), then R(S) is well defined and

any payoff y ∈M(S) can be priced by the following formula: q(y) = y′R(S) S(0) =

S(0)′L(S ′) y [Proof: exercise].

� Moreover, let us consider an incomplete market with redundant securities

(k < d + 1, k < N). Let us denote with S̄ the (k,N) payoff matrix of the no

redundant assets, with R(S̄) its right inverse, and with S̄(0) the vector of these k

asset prices. Then, any payoff y ∈M(S) can be priced by the following formula:

q(y) = y′R(S̄) S̄(0) = S̄(0)′L(S̄ ′) y [Proof: exercise].
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a) q(.) is one of three operators that are related in a triangular fashion:

q : M(S) −→ R ; y = S′ϕ
q−→ Sϕ .

b) the set of all possibles portfolios ϕ ∈ Rd+1 is termed the portfolio space. The

portfolio pricing function is a linear function assigning to each portfolio ϕ the

associated price Sϕ(0) = S(0)′ϕ:

Sϕ(0) : Rd+1 −→ R ; ϕ
Sϕ(0)−→ S(0)′ϕ .

c) the payoff matrix S can be interpreted as a linear operator (the payoff operator)

from the portfolio space Rd+1 to the asset span M(S):

S : Rd+1 −→M(S) ; ϕ
S−→ y = S′ϕ .

56



� When the LOP holds, the portfolio pricing function Sϕ(0) can be represented as

Sϕ(0) = q ◦ S ◦ ϕ = q((S(ϕ)) = q(S′ϕ) = S(0)′ϕ, that is it can be decomposed as:

Sϕ(0) = q ◦ S ◦ ϕ : Rd+1 −→M(S) −→ R

ϕ
S−→ y = S′ϕ

q−→ S(0)′ϕ .

� If markets are complete and if the LOP holds, then the payoff pricing function

assigns a unique price to each state claim ej ∈ {e1, . . . , eN}. Let us denote the

price of the state-j A-D security by q(ad)
j = q(ej). We call q(ad)

j the state price

of state j. Let us denote by q(ad) = [q(ad)
1 , . . . , q(ad)

N ]′ the vector of state prices.

� In that case we have the following results:
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a) given that any payoff y ∈M(S) can be written as y =
N∑
j=1

yj × ej, we have that:

q(y) =
N∑
j=1

yj × q(ej) =
N∑
j=1

yj × q(ad)
j ;

b) this means that the price Si(0) of any basic asset i ∈ {1, . . . , N} can be written

as:

Si(0) = q[Si(T )] = q

 N∑
j=1

Si(T, ωj) × ej

 =
N∑
j=1

Si(T, ωj) × q(ad)
j ;

in matrix notation S(0) = S q(ad) ;

c) we have q(ad) = L(S) S(0): we are able to calculate the vector of state prices,

giving the possibility to price any payoff y ∈ RN ≡ M(S). If the market is not

complete it could be ej /∈M(S) and therefore q(ej) is not well defined.

58



� Theorem : In the financial market {S(0),S} the LOP holds if and only if there

is a payoff q∗ ∈M(S) such that:

q(y) = y′q∗ , ∀ y ∈ M(S) .

– This payoff q∗ ∈M(S) is unique (but not positive in general).

– If {S(0),S} is complete, then q∗ ≡ q(ad) = L(S) S(0).

– If {S(0),S} is incomplete without redundant assets, then q∗ = R(S) S(0).

– If {S(0),S} is incomplete with redundant assets, then q̄∗ = R(S̄) S̄(0).
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3.6.5 Positive pricing : the absence of arbitrage opportunity principle

� We have seen that the LOP makes q(.) a linear function on the asset spanM(S).

Now we are going to impose, to S(0) and S, to satisfy the Absence of Arbitrage

Opportunity (AAO) principle. This is a stronger principle than LOP.

� An arbitrage in the financial market {S(0),S} is a trading strategy (a portfolio)

ϕ ∈ Rd+1 satisfying one of the following two conditions:

i) Sϕ(0) < 0 and Sϕ(T ) ≥ 0, i.e. S(T, ω)′ϕ ≥ 0 ∀ω ∈ Ω;

ii) Sϕ(0) = 0 and Sϕ(T ) ≥ 0, and there exists at least one state ωj ∈ Ω such that

Sϕ(T, ωj) > 0 (S(T, ω)′ϕ ≥ 0 ∀ω ∈ Ω and ∃ωj ∈ Ω such that S(T, ωj)′ϕ > 0).
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� Meaning of i) : we borrow money at t = 0 and we do not have to repay anything

at t = T . Meaning of ii) : we potentially obtain wealth without any initial capital.

� The are no arbitrage opportunities in the financial market {S(0),S} when there

is no arbitrage. That is to say, the following conditions must hold:

a) Sϕ(T ) = 0 implies Sϕ(0) = 0 (the portfolio with a zero payoff has zero value);

b) Sϕ(T ) ≥ 0, Sϕ(T ) 6= 0 implies Sϕ(0) > 0 (the portfolio with positive payoff

has a positive value).

� AAO ⇒ LOP (from a)). AO exist if LOP does not holds.
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� If {S(0),S} satisfies the AAO principle, then q(.) is linear and positive: for any

y > 0 we have q(y) > 0.

� This means that, if markets are complete and AAO is satisfied (⇒ LOP holds),

then q(ej) = qadj > 0 for all j ∈ {1, . . . , N}.

� Nevertheless, if the market is incomplete, we are not able to price any y ∈ RN . In

particular, we can’t price payoffs y ∈ RN/M(S). How can I solve this problem?

� Under the AAO principle, there exists a linear positive Valuation Function

Q(y) which is an extension of q(.) to the entire contingent claim space RN . We

can price any payoff, satisfying at the same time the AAO principle.
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� Formally:

Q : RN −→ R ; y
Q−→ Q(y) ,

Q(y) = q(y) for every y ∈M(S) .

� The financial market {S(0),S} excludes arbitrage iff there exists a (not unique

in general) linear positive valuation function Q(y).

i) Thus, under AAO and given y =
N∑
j=1

yj × ej ∈ RN , we have that:

Q(y) =
N∑
j=1

yj × Q(ej) =
N∑
j=1

yj × q(ad)
j = q(ad)′y , with Q(ej) = q(ad)

j > 0

ii) we can price any payoff y ∈ RN without determining a portfolio ϕ such that

y = S′ϕ.
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iii) Given that Q(.) is not unique in general (if the market is incomplete), then state

price vector q(ad) > 0 is not unique either (and, therefore, also the asset price

Q(y)).

iv) The asset price Q(y) is independent of the positive state price vector q(ad) iff

y ∈M(S) [see slides 68 and 76].

� Let us suppose that the financial market {S(0),S} excludes arbitrage. Then the

financial market {S(0),S} is complete iff there exists a unique linear positive

valuation function Q(y).

� Let us present that result in terms of {S(0),S}!
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� First Fundamental Theorem of Asset Pricing : In the financial market

{S(0),S} there are no arbitrage opportunities if and only if there exists a strictly

positive vector of state prices q(ad) ∈ RN++ such that:

S(0) = S q(ad) , with qadj = q(ej) , ej ∈ {e1, . . . , eN}

q(ej) price of state-j Arrow-Debreu security , ej = (0, . . . , 1︸︷︷︸
jth position

, . . . ,0)′

� Second Fundamental Theorem of Asset Pricing : Let us assume that the

financial market {S(0),S} admits no arbitrage. There exists a unique strictly

positive state price vector q(ad) ∈ RN++ if and only if the market is complete.
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� If the market is incomplete, under AAO, there exists several q(ad) > 0 such that

S(0) = S q(ad). Nevertheless, that system of equations admits (in general) also

non-positive solutions q(ad) ∈ RN . These solutions do not guarantee to satisfy

the AAO principle for any y ∈ RN .

� Theorem : There exists a positive valuation function Q(.) if and only if there

exists a q(ad) ∈ RN++ solution of S(0) = S q(ad). Each positive solution q(ad) defines

a positive valuation function Q(.) satisfying Q(y) = q(ad)′y for all y ∈ RN .

� Theorem : Let us assume that the financial market {S(0),S} admits no arbi-

trage. Then, the market is complete if and only if the matrix equation S′ϕ = y

has a solution ϕ ∈ Rd+1 for any vector y ∈ RN .
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� Intuitively : {S(0),S} admits no arbitrage whenever the price vector S(0) lies

in the convex cone generated by the columns of S, i.e. the vectors S(T, ωj) :=

(S0(T, ωj), . . . , Sd+1(T, ωj))′ with j ∈ {1, . . . , N}:

S(0) ∈ K =

k ∈ RN : k =
N∑
j=1

λj S(T, ωj) ; λj > 0 ∀1 ≤ j ≤ N

 .

� Indeed : S(0) = S q(ad) =
∑N

j=1 q
(ad)
j S(T, ωj)

� Proof of the First and Second FTAP → exercise!
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� Example 1: Let us consider a bond market over a one-period only. This means

that we consider only two dates: t = 0 and t = 1. At the date t = 0 two

zero-coupon bonds (i ∈ {0,1}, say) are available in the market:

– the first one (the asset i = 0) mature at t = 1 and has a price B0(0,1) = 0.9;

– the second one (the asset i = 1) mature at t = 2 and has a price B1(0,2) =

0.81;

• At date t = 1 we have N = 3 possible states of the world : ω1, ω2 and ω3.
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• The payoff matrix of the 2 assets, at date t = 1, is the following (2× 3)-matrix

B (say):

B =

[
B0(1,1;ω1) B0(1,1;ω2) B0(1,1;ω3)
B1(1,2;ω1) B1(1,2;ω2) B1(1,2;ω3)

]
=

[
1 1 1

0.88 0.90 0.92

]
,

where Bi(t, t+h;ωj) denotes the price at date t of the ZCB i, maturing at t+h,

under the jth state of the world (j ∈ {1,2,3}).

Q.1) Is this market arbitrage-free?

Q.2) Is this market complete ?

Q.3) Are there in the market redundant assets?

69



Q.1) The vector B(0) = [0.9,0.81]′ of ZCB prices belongs to the convex cone gener-

ated by the columns of B [see next picture].

– This means that there exists at least one positive vector qad = (qad1 , q
ad
2 , q

ad
3 )′

such that B(0) = B qad,

– and therefore, by the first fundamental theorem of asset pricing the market

is arbitrage-free.
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Q.2) k = rank(B′) = 2 < 3 = N and therefore the market is incomplete.

– Equivalently, B does not admits left inverse given that the number of the

states of the world is larger than the number of assets in the market.

Q.3) the payoff matrix B has only right inverse: indeed, we have 3 states of the world

and 2 assets with (clearly!) independent payoffs.

This means that there are no redundant securities.
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3.6.6 Risk-free payoffs and risk-neutral probabilities

� Let us assume that in our financial market {S(0),S} the asset 0, with price S0(0),

is a risk-less bond (with maturity in t = T ) paying one unit of money in any state

ω ∈ Ω. This means that S0(T, ω) = 1 for all ω ∈ Ω.

� Its price is therefore given by S0(0) = S0(T )′q(ad) =
∑N

j=1 q
(ad)
j =: q(ad)

0 , and the

associated (continuously compounded) interest rate r = 1
T

ln(1/S0(0)) is such

that:

erT =
1∑N

j=1 q
(ad)
j

=
1

q(ad)
0

.
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� Now, given the state price vector q(ad), let us define for any state ωj ∈ Ω the

quantity qj =
q(ad)
j

q(ad)
0

. We have that qj ∈ (0,1) and
∑N

j=1 qj = 1 and therefore

(q1, . . . , qN)′ can be seen as probabilities.

� Let us thus define a new probability measure on Ω by Q({ωj}) = qj > 0, j ∈

{1, . . . , N}. We can represent the price of any asset i as:

Si(0) =
N∑
j=1

q(ad)
j

q(ad)
0

q(ad)
0 Si(T, ωj) =

N∑
j=1

e−rT qj Si(T, ωj) = EQ
0

[
e−rTSi(T )

]

or, equivalently e−r0Si(0) = EQ
0

[
e−rTSi(T )

]
,

that is, the discounted price processes e−rtSi(t), t = 0, T , are Q-martingales.
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� Given that Q({ωj}) > 0 for all j, as well as P({ωj}), then Q ∼ P (is equivalent to)

and for these reasons we call Q an equivalent martingale measure.

� Moreover, given that the asset price is the expected (under Q) payoff discounted

by the risk-free rate r, Q is also called risk-neutral probability measure.

� We can also write the pricing formula as:

Si(0)

er0
= EQ

0

[
Si(T )

erT

]
,

and we denote Nt = ert (the one-period money-market account) we find that

the normalized price Si(t)/Nt is a Q-martingale and Nt is the numeraire we have

chosen in that case.
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� More generally : a numeraire is a non-dividend-paying price process N = (Nt , t ≥

0) with N0 = 1. Under the EMM Q, we have that Si(t)/Nt is a Q-martingale.

� Remember that arbitrage opportunities do not depend on the chosen numéraire.

The choice of Nt is made in order to facilitate the probability-theoretic analysis

in complex asset pricing models. It is made in order to derive (more) tractable

pricing formulas.
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� Pricing formula under Q: under the AAO, any payoff y = y(T ) ∈ RN has a

price given by:

y(0) = Q(y(T )) = EQ
0

[
e−rTy(T )

]
;

given that in general Q is not unique (being q(ad) not unique), we cannot guarantee

the theoretical uniqueness of the price (even if any of them is “reasonable”).

� What happens in practice : the investors of the financial market {S(0),S}, on

the basis of their preferences and associated trading, implicitly decide the vector

of state prices, and thus the EMM Q, to give a price to y(T ) ∈ RN .
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� The system of preferences reflect how much the investors are worried about any

source of risk (ω ∈ Ω) determining the payoffs of the risky assets i ∈ {1, . . . , d}.

� 1st FTAP : In the financial market {S(0),S} there are no arbitrage opportunities

if and only if there exists a (not unique in general) equivalent martingale

measure Q. In other words : {S(0),S} is arbitrage free if and only if there exists

a measure Q ∼ P making discounted asset prices martingales.

� 2nd FTAP : Let us assume that the financial market {S(0),S} admits no arbi-

trage. There exists a unique equivalent martingale measure Q if and only if

the market is complete.
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Proposition [see T. Björk (2004), Chapter 3] - The following hold :

• The financial market is arbitrage free if and only if there exists an equivalent

martingale measure Q.

• The no-arbitrage financial market is complete if and only if the equivalent mar-

tingale measure Q is unique.

• For any payoff y(T ) ∈ RN , the only prices which are consistent with the AAO

principle are of the form:

y(0) = EQ
0

[
e−rTy(T )

]
(1)

where Q is an EMM for the underlying market.
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• If the market is incomplete, then different choices of EMMs Q in the pricing

formula (1) will generically give rise to different prices.

• If y(T ) ∈M(S), even in an incomplete market (M(S) ⊂ RN), the price in (1) will

not depend upon the particular choice of Q (exercise!):

– if k = d + 1 < N , then y(0) = Q(y(T )) = q(y(T )) = y(T )′[R(S) S(0)], where

q∗ = R(S) S(0) can be seen as a unique (but not positive in general) vector

of “state prices” such that q∗ ∈M(S).

– if k < N and k < d + 1, then y(0) = Q(y(T )) = q(y(T )) = y(T )′[R(S̄) S̄(0)],

where q̄∗ = R(S̄) S̄(0) can be seen as a unique (but not positive in general)

vector of state prices such that q̄∗ ∈M(S).
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� Example 2: Let us consider a financial market over a one-period only. This means

that we consider only two dates: t = 0 and t = 1. At the date t = 0 two assets

(i ∈ {0,1}, say) are available in the market:

– the first one (the asset i = 0) is a risk-free bond maturing at t = 1 and with

a price S0(0) = 0.5;

– the second one (the asset i = 1) is a risky asset with price S1(0) = 1.

• At date t = 1 we have N = 3 possible states of the world : ω1, ω2 and ω3.

81



• The payoff matrix of the 2 assets, at date t = 1, is the following (2× 3)-matrix

S (say):

S =

[
S0(1, ω1) S0(1, ω2) S0(1, ω3)
S1(1, ω1) S1(1, ω2) S1(1, ω3)

]
=

[
1 1 1
1 2 4

]
,

where Si(t, ωj) denotes the price at date t of the asset i under the jth state of

the world (j ∈ {1,2,3}).

Q.1) Is this market arbitrage-free ? Q.2) Is it complete ?

Q.3) Is there in the market {S(0),S} at least one equivalent martingale mea-

sure ? If yes, how many ?

– Let us exploit the 1st and 2nd FTAP.
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Q.1) The first fundamental theorem of asset pricing tell us that the financial market

{S(0),S} is arbitrage-free if and only if there exists a vector qad = (qad1 , q
ad
2 , q

ad
3 )′ ∈

R3
++ of state prices such that S(0) = Sqad.

• In our case, we have to find a positive solution qad = (qad1 , q
ad
2 , q

ad
3 )′ to the:

1
2

= qad1 + qad2 + qad3

1 = qad1 + 2qad2 + 4qad3 .

• Now, taking qad3 as a parameter (we have two equations and three unknowns)

the solution for qad1 and qad2 is: qad1 = 2qad3

qad2 = 1
2
− 3qad3 .

and we have qad1 > 0 and qad2 > 0 if and only if 0 < qad3 < 1
6
.
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• This means that, for any positive value of qad3 ∈ ] 0, 1
6

[ we have a vector qad =

(qad1 , q
ad
2 , q

ad
3 )′ ∈ R3

++ solving the system S(0) = Sqad and therefore the market is

arbitrage-free.

Q.2) The second fundamental theorem of asset pricing tell us that a no-arbitrage

market is complete if and only if there exists a unique vector qad = (qad1 , q
ad
2 , q

ad
3 )′ ∈

R3
++ of state prices such that S(0) = Sqad.

• From question i) we have seen that we have an infinity of positive solutions qad,

each one associated to a different value of qad3 ∈ ] 0, 1
6

[. This means that the

market is incomplete.
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Q.3) Given that the market is arbitrage-free and incomplete, we have an infinity of

equivalent martingale measures.

• For any qad3 ∈ ] 0, 1
6

[, the probability measure Q given by (q1, q2, q3), with qj =

qadj /
∑3

j=1 q
ad
j for all j ∈ {1,2,3}, is an equivalent martingale measure for the

market.

• Indeed, from the risk-free asset we have that the (continuously compounded)

short rate is r = ln(1/S0(0)) and therefore er = 1/
∑3

j=1 q
ad
j . Thus, we can

represent the price of the risky asset as:

S1(0) =
3∑

j=1

q(ad)
j

q(ad)
0

q(ad)
0 S1(1, ωj) =

3∑
j=1

e−r qj S1(1, ωj) = EQ [e−rS1(1)
]
,

proving the fact that Q is an equivalent martingale measure.
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3.6.7 Stochastic discount factors

� A stochastic discount factor (SDF) (or state-price deflator, or pricing kernel)

is a random variable m(T, ω), identified also by the N-dimensional vector of its

possible realizations m(T ) = (m1, . . . ,mN)′ ∈ RN , such that the price of a payoff

y(T ) is E0[m(T, ω) y(T, ω)]. Let us start from the LOP:

� Theorem : In the financial market {S(0),S} the LOP holds if and only if there

is a random variable m∗(T ) ∈M(S) such that:

q(y) = E0[m∗(T, ω) y(T, ω)] =
N∑
j=1

m∗j yj pj , ∀ y ∈ M(S) .

This random variable m∗(T ) ∈M(S) is unique but not positive in general.
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� If {S(0),S} is complete, then each realization of the SDF is given by:

m∗j =
q(ad)
j

pj
, ∀j ∈ {1, . . . , N} .

� Indeed:

q(y) =
N∑
j=1

yj q(ej) =
N∑
j=1

yj q
(ad)
j =

N∑
j=1

yj pj
q(ad)
j

pj︸ ︷︷ ︸
m∗j

.

� ∀j ∈ {1, . . . , N}, given a unique q(ad)
j , we have a unique m∗j.
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� If {S(0),S} is incomplete without redundant assets, then:

m∗(T, ω) = S(T, ω)′{E[S(T, ω)S(T, ω)′]}−1 S(0) ;

or, stacking the components in the vector m∗(T ):

m∗(T ) = S′{E[SS′]}−1 S(0) ;

• Indeed: we are searching for m∗(T ) ∈M(S) with the asset span being a linear

vector space, i.e. its elements are random variables of the form S(T, ω)′ϕ,

with ϕ an arbitrary portfolio.
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• This means that we search for m∗(T, ω) = S(T, ω)′ϕ pricing basis assets. That

is, we have to construct ϕ so that:

S(0) = E0[m∗(T, ω)S(T, ω)] = E0[S(T, ω)S(T, ω)′ϕ]

= E0[S(T, ω)S(T, ω)′]ϕ ,

which requires

ϕ = [E(S(T, ω)S(T, ω)′)]−1 S(0) ,

• and, thus,

m∗(T, ω) = S(T, ω)′{E[S(T, ω)S(T, ω)′]}−1 S(0) ;
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↪→ In terms of state prices, remember that, under the LOP (if y ∈ M(S)):

q(y) = y′q∗ = y′R(S)S(0) = y′S′(S S′)−1 S(0) .

� If {S(0),S} is incomplete with redundant assets, then:

m̄∗(T ) = S̄′[E(S̄S̄′)]−1 S̄(0) ,

↪→ given that, under the LOP (if y ∈ M(S)):

q(y) = y′q̄∗ = y′R(S̄)S(0) .
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� 1st FTAP : In the financial market {S(0),S} there are no arbitrage opportunities

if and only if there exists a (not unique in general) positive SDF m(T ) such

that:
y(0) = Q(y(T )) = E0[m(T, ω) y(T, ω)] , ∀ y(T ) ∈ RN ,

mj =
q(ad)
j

pj
, q(ad)

j not unique in general .

(2)

� 2nd FTAP : Let us assume that the financial market {S(0),S} admits no arbi-

trage. There exists a unique positive SDF m(T, ω) if and only if the market is

complete.

• See Cochrane (2005).
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Proposition - The following hold :

• The financial market is arbitrage free if and only if there exists positive SDF

m(T, ω).

• The no-arbitrage financial market is complete if and only if the positive SDF

m(T, ω) is unique.

• For any payoff y(T ) ∈ RN , the only prices which are consistent with the AAO

principle are of the form:

y(0) = Q(y(T )) = E0 [m(T, ω)y(T, ω)] , (3)

where m(T, ω) is a positive SDF for the underlying market.
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• If the market is incomplete, then different choices of SDFs m(T, ω) in the pricing

formula (3) will generically give rise to different prices.

• If y(T ) ∈ M(S), even in an incomplete market (M(S) ⊂ RN), the price in (3) is

unique and given by the unique SDF m∗(T ) ∈M(S):

– if k = d + 1 < N , then y(0) = Q(y(T )) = q(y(T )) = E [m∗(T, ω)y(T, ω)],

where m∗(T ) = S′[E(SS′)]−1 S(0) is the unique (but not positive in general)

SDF m∗(T ) ∈M(S).

– if k < N and k < d+1, then y(0) = Q(y(T )) = q(y(T )) = E [m̄∗(T, ω)y(T, ω)],

where m̄∗(T ) = S̄′[E(S̄S̄′)]−1 S̄(0) is the unique (but not positive in general)

SDF m̄∗(T ) ∈M(S).
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3.6.8 Stochastic discount factor and change of probability measure

� Recalling the notation pj = P({ωj}) > 0 and qj = Q({ωj}) > 0, for all j ∈

{1, . . . , N}, about the historical and risk-neutral probability measures, we may

define a new random variable on Ω.

� Definition : the random variable L on Ω is defined by L(ωj) =
qj

pj
for all j ∈

{1, . . . , N}. It is the likelihood ratio between the probability measures Q and P.

� In more general situations, L is known as the Radon-Nikodym derivative of Q

with respect to P: L(ωj) =
dQ
dP

(ωj) =
qj

pj
.
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� We have that this change of probability measure, from P to Q can be written

by means of the SDF m(T ):

L(ωj) =
dQ
dP

(ωj) =
m(T, ωj)

E0[m(T, ω)]
, that is L(ωj) =

qj

pj
=

mj

N∑
j=1

mj pj

.

� Now, in the case of a risk-free asset we have:

S0(0) = e−r T = E0[m(T, ω)]

� and therefore we can write:

L(ωj) e
−rT = m(T, ωj) , that is

qj

pj
e−rT = mj .
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� Thus, for any payoff y(T ) ∈ RN , the only prices which are consistent with the

AAO principle are of the form:

y(0) = E0 [m(T, ω)y(T, ω)] = EQ
0

[
e−rTy(T, ω)

]
(4)

where m(T ) (Q) is a positive SDF (an EMM) for the underlying market.

� If we consider the state-j A-D security with payoff y(T ) = ej, we have that its

no-arbitrage price can written as:

q(ad)
j = E0 [m(T, ω)y(T, ω)] = mj pj , ∀ j ∈ {1, . . . , N} .

� Under the AAO principle, for a given EMM and a given state ωj, the associated

value of positive SDF m(T, ωj) can be seen as the A-D price divided by P({ωj}) =

pj.
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� In the previous characterization of the pricing formula, via the SDF m(T ), we

have used as numeraire the process Nt = er t. Now, given m(T ), we can provide

a more general formula for the change of probability measure:

dQ
dP

(ωj) =
NT m(T, ωj)

N0
> 0 , E0

[
dQ
dP

]
= 1 , being N0 = E0[NT m(T, ω)] ,

and we find again that the price y(0) is such that y(0)/N0 is a Q-martingale.

� Indeed

y(0) = E0[m(T, ω) y(T, ω)]⇐⇒
N0

N0
y(0) = E0

[
NT

NT
m(T, ω) y(T, ω)

]
� thus:

y(0)

N0
= E0

[
NT m(T, ω)

N0

y(T, ω)

NT

]
= EQ

0

[
y(T, ω)

NT

]
.
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3.7 Arbitrage theory in a dynamic discrete-time model

3.7.1 The setup of the discrete-time model

� The frictionless financial market contains d+ 1 traded basic assets, whose prices

at time t = 0 are denoted by the vector S(0) ∈ Rd+1
+ .

� Economic activities (trading) take place at dates t ∈ {1, . . . , T}, where T is the

terminal date for all these economic activities.

� Randomness is formalized by a probability space (Ω,F ,P) equipped with a fil-

tration F = (Ft)Tt=0, that is an non-decreasing sequence of sub-σ-algebras of F:

F0 ⊆ F1 ⊆ . . . ⊆ FT = F. Ft represents the (common) information available to

any investor at date t.
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� The prices of the assets at date t are non-negative Ft-measurable random vari-

ables that we organize in the vector S(t) = [S0(t), . . . , Sd(t)]′.

� ”Ft-measurable” means that at date t we know (we observe) the prices of the

basic assets.

� A financial asset (basic asset, derivatives or contingent claims) has a price

(payoff) y(t) at date t which is a Ft-measurable random variable.

– If we think about stocks and bonds we have y(t) = Si(t) and y(t) = B(t, h).

– In the case of a European Call option we have : y(T ) = (Si(T )−K)+, where

Si(T ) is the underlying risky asset (stock, index, ...), T is the maturity date

of the contract and K is the strike price. This payoff is FT -measurable
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� Let us denote by L2,t the (Hilbert) space of Ft-measurable square integrable

random variables x(t) (say) defined on (Ω,F ,F,P) (V ar[x(t)] <∞).

� The payoff of any financial asset in the market is such that y(t) ∈ L2,t.

� Any payoff y(t) delivered at date t has a price at date s < t for each Ft, denoted

by Qs(y(t)), and function of Fs. In other words, Qs(y(t)) is an Fs-measurable

random variable.

� We also assume the linearity and continuity of the pricing function Qs(.):

– Qs [λ1y1(t) + λ2y2(t)] = λ1Qs(y1(t)) + λ2Qs(y2(t)) (law of one price);

– if yn(t)
L2t

GGGGGGGGGA

n→∞
0, Qs(yn(t)) −→

n→∞
0, where {yn(t) : n = 1,2, . . .} is a date-t

sequence of payoffs (converging towards 0).
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3.7.2 Self-financing trading strategies

� A trading strategy (or dynamic portfolio) ϕ is a Rd+1 vector stochastic process

ϕ = (ϕ(t))Tt=1 = ((ϕ0(t), ϕ1(t), . . . , ϕd(t))′)Tt=1 which is predictable.

� This means that each ϕi(t) is Ft−1-measurable for t ≥ 1.

� Here ϕi(t) denotes the number of shares of asset i held in the portfolio at

time t BUT to be determined ”just before t”, i.e. with only knowledge of the

information Ft−1.

� In particular, the investor decides ϕi(t) observing Si(t − 1) and he does not yet

know Si(t).
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� The value of the portfolio at time t is the scalar product:

Sϕ(t) = ϕ(t)′S(t) =
d∑

i=0

ϕi(t)Si(t) , t ∈ {1, . . . , T}

and Sϕ(0) = ϕ(1)′S(0) .

� The process Sϕ(t) is called the wealth or the value process of the trading

strategy ϕ.

� The initial wealth Sϕ(0) is called initial investment or endowment of the in-

vestor.
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� Now, given that ϕ(t)′S(t− 1) reflects the market value of the portfolio just after

it has been established at time t−1, and ϕ(t)′S(t) its value just after time t prices

are observed (but before changes are made in the portfolio), we have that:

ϕ(t)′(S(t)− S(t− 1)) = ϕ(t)′∆S(t) ,

is the change of the market value due to only security price variations between

t− 1 and t. Thus we can define:

� The gains process Gϕ of a trading strategy ϕ is given by:

Gϕ(t) =
t∑

τ=1

ϕ(τ)′(S(τ)− S(τ − 1)) =
t∑

τ=1

ϕ(τ)′∆S(τ) , t ∈ {1, . . . , T} .
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� Now, let us assume that S0(t) is the money-market account, that is S0(0) = 1

and S0(t) = exp(r0 + . . . + rt−1). Let us take this asset as numeraire and let us

consider the vector of discounted asset prices S̃(t) =
(

1, S1(t)
S0(t)

, . . . , Sd(t)
S0(t)

)′
. Then:

� The discounted value process is:

S̃ϕ(t) =
1

S0(t)
(ϕ(t)′S(t)) = ϕ(t)′S̃(t) , t ∈ {1, . . . , T} .

� and the discounted gains process is:

G̃ϕ(t) =
t∑

τ=1

ϕ(τ)′(S̃(τ)− S̃(τ − 1)) =
t∑

τ=1

ϕ(τ)′∆S̃(τ) , t ∈ {1, . . . , T} .
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� The strategy ϕ is self-financing, ϕ ∈ Φ, if:

ϕ(t)′S(t) = ϕ(t+ 1)′S(t) , t ∈ {1, . . . , T − 1} .

Interpretation : when new prices S(t) are quoted (observed) at time t, the

investor adjust his portfolio from ϕ(t) to ϕ(t+1) without bringing in or consuming

any wealth.

� A trading strategy ϕ is self-financing with respect to S(t) if and only if ϕ is

self-financing with respect to S̃(t) (exercise).

� A trading strategy ϕ belongs to Φ if and only if (exercise):

S̃ϕ(t) = S̃ϕ(0) + G̃ϕ(t) , t ∈ {1, . . . , T} .

105



3.7.3 The no-arbitrage condition

� Let Φ̃ ⊂ Φ be a set of self-financing trading strategies. A strategy ϕ is called an

arbitrage opportunity or arbitrage strategy with respect to Φ̃ if:

P{Sϕ(0) = 0} = 1 ,

P{Sϕ(T ) ≥ 0} = 1 , and P{Sϕ(T ) > 0} > 0 .

� An arbitrage opportunity is a self-financing trading strategy with zero initial value,

which produces a non-negative final value with probability one and has positive

probability of a positive final value.

� We say that the financial market {S(0), (S(t))Tt=1} is arbitrage free if there are

no arbitrage opportunities in the class Φ of trading strategies.
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� We say that the absence of arbitrage opportunity principle in satisfied in

the financial market if at any t ∈ {0, . . . , T − 1} it is impossible to constitute a

portfolio ϕ ∈ Φ, possibly modified at subsequent dates, such that:

i) its price at t is non positive;

ii) its payoffs at subsequent dates are non negative;

iii) there exists at least one date s > t such that the net payoff, at s, is strictly

positive with a strictly positive conditional probability at t.
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� A probability measure Q on (Ω,FT) equivalent to P is called a martingale measure

for S̃ = (S̃(t))Tt=1 if the process S̃ = (S̃(t))Tt=1 follows a Q-martingale with respect

to the filtration F.

� Let Q an EMM and ϕ ∈ Φ any self-financing strategy. The the wealth process

S̃ϕ(t) is a Q-martingale with respect to the filtration F (exercise).

� 1st FTAP : The financial market {S(0), (S(t))Tt=1} is arbitrage-free if and only

if there exists a (not unique in general) equivalent martingale measure

Q. Equivalently : {S(0), (S(t))Tt=1} is arbitrage-free if and only if there exists a

measure Q ∼ P making the d−dimensional discounted asset price process S̃ =

(S̃(t))Tt=1 a martingale.
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3.7.4 Attainable payoffs

� Given the market {S(0), (S(t))Tt=1}, a financial asset with payoff y(T ) is attain-

able (i.e. it is in the asset span) is there exists a replicating strategy ϕ ∈ Φ

such that:

Sϕ(T ) = y(T ) , or, equivalently

Sϕ(T )

S0(T )
= S̃ϕ(T ) = Sϕ(0) + G̃ϕ(T ) =

y(T )

S0(T )
.
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� If y(T ) is attainable, then the no-arbitrage price process y = (y(t))Tt=0 is given by

the value process of any replicating strategy ϕ for y(T ):

Qt(y(T )) = Sϕ(t) = S0(t)S̃ϕ(t)

= S0(t)EQ [S̃ϕ(T ) | Ft
]
, as S̃ϕ(t) is a Q-martingale

= S0(t)EQ [S−1
0 (T )Sϕ(T ) | Ft

]
= S0(t)EQ [S−1

0 (T ) y(T ) | Ft
]
, as ϕ is a replicating strategy for y(T )

= EQ [e−rt−...−rT−1 y(T ) | Ft
]

= EQ
t

[
e−rt−...−rT−1 y(T )] .
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3.7.5 Complete markets: uniqueness of the EMM

� The financial market {S(0), (S(t))Tt=1} is complete if every contingent claim with

payoff y(T ) is attainable, i.e. for every FT -measurable random variable y(T ) there

exists a replicating self-financing trading strategy ϕ ∈ Φ such that Sϕ(T ) = y(T ).

� 2nd FTAP : Let us assume that the financial market {S(0), (S(t))Tt=1} admits

no arbitrage. There exists a unique equivalent martingale measure Q if

and only if the market is complete. Equivalently: the arbitrage-free market

{S(0), (S(t))Tt=1} is complete if and only if there exists a measure Q ∼ P making

the d−dimensional discounted asset price process S̃ = (S̃(t))Tt=1 a martingale.
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Proposition - The following hold :

• The financial market is arbitrage free if and only if there exists an equivalent

martingale measure Q.

• The no-arbitrage financial market is complete if and only if the equivalent mar-

tingale measure Q is unique.

• For any payoff (random variable) y(T ), the only prices which are consistent with

the AAO principle are of the form:

y(t) = Qt(y(T )) = EQ
t

[
e−rt−...−rT−1y(T )

]
(5)

where Q is an EMM for the underlying market.
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• If the market is incomplete, then different choices of EMMs Q in the pricing

formula (5) will generically give rise to different no-arbitrage prices.

• If y(T ) is attainable, then the no-arbitrage price process y = (y(t))Tt=0 is given by

the value process of any replicating strategy ϕ for y(T ).
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3.7.6 Stochastic discount factors

� The stochastic discount factor (SDF) (or state-price deflator, or pricing ker-

nel) m(t, T ) is a FT -measurable random variable such that the price at date t of

any FT -measurable payoff y(T ) can be represented as Et[m(t, T ) y(T )].

� If the financial market {S(0), (S(t))Tt=1} is arbitrage-free, then there exists a

positive Ft+1-measurable random variable m(t, t+ 1) such that the price y(t) at

date t of any asset that does not pay any dividend at t+ 1 satisfies:

y(t) = Et[m(t, t+ 1)y(t+ 1)] .
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� More generally for any payoff y(t+ h) at t+ h ≤ T , we have :

y(t) = Et[m(t, t+ h)y(t+ h)] = Et[m(t, t+ 1) . . .m(t+ h− 1, t+ h)y(t+ h)] .

� Thus, we have that:

m(t, T ) = m(t, t+ 1)m(t+ 1, t+ 2) · · ·m(T − 1, T ) =
m(0, T )

m(0, t)
.

We will call m(t, t + 1) (m(t, t + h), respectively) the one-period (h-period, re-

spectively) stochastic discount factor, while m(0, T ) will be named state price

deflator.

� We can also write no-arbitrage price process y = (y(t))Tt=0 as:

m(0, t)y(t) = Et[m(0, T )y(T )] , so m(0, t)y(t) is a P-martingale.
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� 1st FTAP : The financial market {S(0), (S(t))Tt=1} is arbitrage-free if and only

if there exists a (not unique in general) positive SDF m(t, T ) such that the

price y(t) at date t of any payoff y(T ) can be written as:

y(t) = Et[m(t, T )y(T )] .

� 2nd FTAP : Let us assume that the financial market {S(0), (S(t))Tt=1} admits no

arbitrage. There exists a unique positive SDF m(t, T ) such that the price at

date t of any FT -measurable payoff y(T ) is given by Et[m(t, T ) y(T )] if and only

if the market is complete.
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Proposition - The following hold :

• The financial market is arbitrage free if and only if there exists positive SDF

m(0, T ).

• The no-arbitrage financial market is complete if and only if the positive SDF

m(0, T ) is unique.

• For any payoff y(T ), the only date t prices which are consistent with the AAO

principle are of the form:

y(t) = Qt(y(T )) = Et [m(t, T )y(T )] , ∀t ∈ 0, . . . , T − 1 (6)

where m(t, T ) is a positive SDF for the underlying market.
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• If the market is incomplete, then different choices of SDFs m(t, T ) in the pricing

formula (6) will generically give rise to different prices.

• If y(T ) is attainable, even in an incomplete market, the price in (6) is unique and

given by the unique SDF m∗(t, T ) in the asset span.
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3.7.7 Stochastic discount factor and change of probability measure

� A numeraire is defined as a non-dividend-paying price process N = (Nt, t ≥ 0)

with N0 = 1. In other words, N is a stochastic process such that, for every T > t:

Nt = Et[m(t, T )NT ] , and N0 = E0[m(0, T )NT ] = 1 , where

m(t, T ) = m(t, t+ 1) · . . . ·m(T − 1, T ) .

� The process N∗ = (Ntm(0, t), t ≥ 0) is therefore a P-martingale with unitary value

in t = 0. Let Q be the probability (equivalent to P) defined by the sequence of

conditional densities:

dQt,t+1

dPt,t+1
=
Nt+1m(t, t+ 1)

Nt
> 0 , EP

t

[
dQt,t+1

dPt,t+1

]
= 1 , t ∈ {0, . . . , T − 1} .
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� This means that
dQt,t+1

dPt,t+1
is the one-period conditional p.d.f. of Q w.r.t. to P,

and the associated Radon-Nikodym derivative is:

ξT =
dQ
dP

=
T−1∏
t=0

dQt,t+1

dPt,t+1
=
NT m(0, T )

N0
=

T−1∏
t=0

Nt+1m(t, t+ 1)

Nt
.

This means that ξT is the joint p.d.f. (over the time period of interest {0, . . . , T})

of Q w.r.t. to P.

� Observe that we have:

ξt =
∏t−1
i=0

dQi,i+1

dPi,i+1
= Et(ξT),

and therefore the ξt is a P-martingale.
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� We have that a price process y(t) is such that y(t)/Nt is a Q-martingale:

y(t) = Et[m(t, t+ 1)y(t+ 1)]⇐⇒
Nt

Nt
y(t) = Et

[
Nt+1

Nt+1
m(t, t+ 1) y(t+ 1)

]
� thus:

y(t)

Nt
= Et

[
Nt+1m(t, t+ 1)

Nt

y(t+ 1)

Nt+1

]
= EQ

t

[
y(t+ 1)

Nt+1

]
.

� Observe that the no-arbitrage price at date t of a ZCB with maturity date in

t+ 1 is such that:

B(t, t+ 1) = Et [m(t, t+ 1)] = e−rt

where rt is the (t, t+ 1) short rate (YTM), known in t .
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� If we consider as numeraire the money-market account Nt = exp(r0+. . .+rt−1) =

A0,t, where (A0,t)−1 = E0(m(0,1)) · · ·Et−1(m(t − 1, t)), the associated equivalent

probability Q has a one-period conditional density, with respect to P, given by :

dQt,t+1

dPt,t+1
=
A0,t+1m(t, t+ 1)

A0,t
=

m(t, t+ 1)

Et(m(t, t+ 1))
= ertm(t, t+ 1) .

and it is called risk-neutral probability measure.

� This means that the pricing formula y(t) = Et[m(t, t+ 1)y(t+ 1)] can be written:

y(t) = Et

[
m(t, t+ 1)

Et[m(t, t+ 1)]
Et[m(t, t+ 1)]y(t+ 1)

]
= EQ

t [exp(−rt)y(t+ 1)] .
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� So, for any no-arbitrage price process y = (y(t))Tt=0 we have (denoting ln[y(t +

1)/y(t)] = rt,t+1):

1 = EQ
t

[
exp(−rt)

y(t+ 1)

y(t)

]
⇒ exp(rt) = EQ

t

[
exp(rt,t+1)

]
.

� In a general (T − t)-period horizon, the conditional (to Ft) density of the risk-

neutral probability Q with respect to the historical probability P is given by:

dQt,T

dPt,T
=

m(t, t+ 1) · . . . ·m(T − 1, T )

Et(m(t, t+ 1)) · . . . · ET−1(m(T − 1, T ))

= exp(rt + . . .+ rT−1)m(t, T ) ,

� This means that, for any payoff y(T ) at T , we have :

y(t) = EQ
t [exp(−rt − . . .− rT−1)y(T )] ,

and y(t)/A0,t is a Q-martingale.
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� In the case of a ZCB maturing at T = t + h, its no-arbitrage price at date t is

given, under P, by :

B(t, t+ h) = Et[m(t, t+ h)]

= Et[m(t, t+ 1)B(t+ 1, t+ h)] .

� Under the risk-neutral probability Q we can equivalently write:

B(t, t+ h) = EQ
t [exp(−rt − . . .− rt+h−1)]

= EQ
t [exp(−rt)B(t+ 1, t+ h)] .
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