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Exercise N◦ 01.

The coupon bond price at date t = 0 is given by:

CB(0, T ) =
T∑
i=1

(Ci)× (1 + Y )−i ,

and the associated duration D is given by:

D =

T∑
i=1

(i× Ci)× (1 + Y )−i

T∑
i=1

(Ci)× (1 + Y )−i

.

The numerator is given by
5∑
i=1

(i × Ci) × (1 + 0.1)−i = 395.6814. The denominator, that is

the bond price, is
5∑
i=1

(Ci) × (1 + 0.1)−i = 92.4184. The duration of the bond is therefore

D = 395.6814/92.4184 = 4.28 years.

Exercise N◦ 02 (Exercise N◦ 01, continued).

We simply need to apply the formula
dCB(0, T )

CB(0, T )
= − D

1 + Y
dY . In our case we have:

dCB(0, T )

92.4184
= − 4.28

1 + 0.1
× 0.001⇒ dCB(0, T ) = −0.3596 ;

This means that the new price, predicted using the Duration of the bond, is 92.4184 − 0.3596 =
92.0588. The true bond price, after the interest rate variation, is 92.0596. This means that the true
and predicted variation are quite close.

Now, if we consider a rise of the interest rate at 15%, the bond price variation calculated using the
its Duration is:

dCB(0, T )

92.4184
= − 4.28

1 + 0.1
× 0.05⇒ dCB(0, T ) = −17.9796 ,
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while its true variation is 76.5349 − 92.4184 = −15.8835. The true variation is quite smaller than
the one approximated using the bond Duration. We numerically observe that the Duration provide
a good approximation of the bond price variation only for infinitesimal interest rate variations (like
a dY = 0.001).

Exercise N◦ 03.

We have seen during Lecture 1 that, if we consider at date t = 0 a coupon bond with a constant
coupon rate c, a face value of CT and time to maturity T , then we have:

D =
CBc(0, T )

CB(0, T )

(
1 +

1

Y

)
+
CBCT (0, T )

CB(0, T )

(
1− c

Y

)
T ,

with CBc(0, T ) =
T∑
i=1

(c× CT )× (1 + Y )−i = (c× CT )
1− (1 + Y )−T

Y
,

and CBCT (0, T ) = CT (1 + Y )−T .

The perpetual bond (also called perpetuity) has T = +∞, no final repayment and constant coupon
of C. This means that CBCT = 0 given that CT = 0 and thus the duration of the perpetuity Dp

(say) is:

Dp =
CBc(0, T )

CB(0, T )

(
1 +

1

Y

)
=

1 + Y

Y

given that CB = CBc.

Exercise N◦ 04.

Given the formula:

D =
CBc(0, T )

CB(0, T )

(
1 +

1

Y

)
+
CBCT (0, T )

CB(0, T )

(
1− c

Y

)
T ,

with CBc(0, T ) =
T∑
i=1

(c× CT )× (1 + Y )−i = (c× CT )
1− (1 + Y )−T

Y
,

and CBCT (0, T ) = CT (1 + Y )−T ,

we have that:
i) the duration of the zero-coupon bond is equal to its residual maturity, that is 7 years;

ii) from the formula Dp = (1 + Y )/Y we have that Dp = 1.05/0.05 = 21 years (the coupon
information is irrelevant);

iii) this coupon bond is a par bond (c = Y and thus CB(0, T ) = CT ) and therefore the Duration
formula is:

D = (1− (1 + Y )−T )×
(

1 +
1

Y

)
.

2



This means that D = [(1− (1.05)−10)/(0.05)]× 1.05 = 8.11 years.

Exercise N◦ 05.

The duration of the bond is D = 416.99/100 = 4.1699 years. The convexity of the bond is:

κ =

T∑
i=1

(i× (1 + i)× Ci)
(1 + Y )i+2

T∑
i=1

Ci
(1 + Y )i

,

=
2343.57

100× (1.1)2
= 19.3683 (years)2

Exercise N◦ 06 (Exercise N◦ 05, continued).

We have seen during Lecture 1 that the bond price variation can be expressed in the following way:

∆CB(Y )

CB(Y )
= −Dmod∆Y +

κ

2
(∆Y )2 ,

where Dmod = −dCB(Y )

dY

1

CB(Y )
or Dmod =

D

1 + Y
,

and κ =
1

CB(Y )

d2CB(Y )

dY 2
is the convexity .

In our case we have:

∆CB(Y )

CB(Y )
= − D

1 + Y
∆Y +

κ

2
(∆Y )2

= −4.1699

1.1
× 0.01 +

19.3683

2
× (0.01)2 = −3.7908% + 0.0968% = −3.6940% .

The new price is therefore 96.306.
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Exercise N◦ 07.

The price, duration and convexity can be easily calculated through the following Table 1 :

Period Time Cash Flow Discount Discounted CF Weight Weight ×Ti Weight ×T 2
i

i Ti CF B(0, Ti) CF ×B(0, Ti) wi wi × Ti wi × T 2
i

1 0.5 2.5 0.9778 2.44 0.024 0.0118 0.0059
2 1.0 2.5 0.9560 2.39 0.023 0.0231 0.0231
3 1.5 2.5 0.9347 2.34 0.023 0.0338 0.0508
4 2.0 2.5 0.9139 2.28 0.022 0.0441 0.0882
5 2.5 2.5 0.8936 2.23 0.022 0.0539 0.1348
6 3.0 2.5 0.8737 2.18 0.021 0.0633 0.1898
7 3.5 2.5 0.8543 2.14 0.021 0.0722 0.2526
8 4.0 2.5 0.8353 2.09 0.020 0.0806 0.3226
9 4.5 2.5 0.8167 2.04 0.020 0.0887 0.3992
10 5.0 2.5 0.7985 2.00 0.019 0.0964 0.4818
11 5.5 2.5 0.7808 1.95 0.019 0.1036 0.5701
12 6.0 2.5 0.7634 1.91 0.018 0.1106 0.6633
13 6.5 2.5 0.7464 1.87 0.018 0.1171 0.7612
14 7.0 2.5 0.7298 1.82 0.018 0.1233 0.8631
15 7.5 2.5 0.7136 1.78 0.017 0.1292 0.9688
16 8.0 2.5 0.6977 1.74 0.017 0.1347 1.0778
17 8.5 2.5 0.6822 1.71 0.016 0.1400 1.1896
18 9.0 2.5 0.6670 1.67 0.016 0.1449 1.3040
19 9.5 2.5 0.6521 1.63 0.016 0.1495 1.4206
20 10.0 102.5 0.6376 65.36 0.631 6.3101 63.1010

CB(0, T ) = 103.58 D∗mod,cb = 8.03 κ∗cb = 73.87
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Exercise N◦ 08 (Exercise N◦ 07, continued; duration hedging strategy).

We must have dΠ = 0 and, from the relation Π = CB(0, T ) + K × B(0, T ), we immediately find
that this condition implies:

K∗ = −
D∗mod,cb × CB(0, T )

D∗mod,zcb × B(0, T )
= −8.03× 103.58

10× 63.76
= −1.3045 .

That is, to hedge against parallel shift of the yield curve (interest rate risk), the corporation must
short 1.3045 units the 10-year ZCB.

In order to understand how the duration hedge perform in the three scenarios we need to recompute
the values of the coupon bond and ZCB for the new interest rate scenarios, compute the new value
of the portfolio Π and then take the difference from the original portfolio value. These results are
organized in the following Table 2:

Yield Curve Shift CB(0, T ) B(0, T ) K dΠ

Initial Values 103.58 63.76 -1.3045
dR = 0.1% 102.75 63.13 -1.3045 -0.0003
dR = 1% 95.63 57.69 -1.3045 -0.0318
dR = 2% 88.38 52.20 -1.3045 -0.1210

dR = −0.1% 104.41 64.40 -1.3045 -0.0003
dR = −1% 112.29 70.47 -1.3045 -0.0350
dR = −2% 121.84 77.88 -1.3045 -0.1474

As can be seen the change in portfolio value is extremely small in the first scenario, however a larger
shift in the yield curve still produces a loss which increases with the interest rate rise. Indeed, the
above condition K∗ implies a portfolio duration Dmod,Π = 0 clearly highlighting that this strategy
is useful for infinitesimal interest rates variations. In addition, observe that the portfolio loses
money both when interest rates increase and decrease.

Exercise N◦ 09 (Exercise N◦ 08, continued; duration-convexity hedging strategy).

The portfolio is hedged if a shift in the flat yield curve does not affect the portfolio value, that is,
if dΠ = 0. Taking into account also the convexity term, we have:

dΠ = dP +K1 × dP1 +K2 × dP2

= −D∗mod × P × dR+
1

2
× κ∗ × P × (dR)2

−K1 × D∗mod,1 × P1 × dR+
1

2
× K1 × κ∗1 × P1 × (dR)2

−K2 × D∗mod,2 × P2 × dR+
1

2
× K2 × κ∗2 × P2 × (dR)2 .
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We can now pull together the terms in dR and (dR)2 to obtain:

dΠ = −
(
D∗mod × P +K1 × D∗mod,1 × P1 +K2 × D∗mod,2 × P2

)
× dR

+
1

2
× (κ∗ × P +K1 × κ∗1 × P1 +K2 × κ∗2 × P2)× (dR)2 .

Thus, in order for the portfolio to be immune to both small and larger changes, we have to chose
K1 and K2 such that:

K1 × D∗mod,1 × P1 +K2 × D∗mod,2 × P2 = −D∗mod × P Delta Hedging

K1 × κ∗1 × P1 +K2 × κ∗2 × P2 = −κ∗ × P Convexity Hedging .

The solution of this system is:

K1 = − P
P1
×

(
D∗mod × κ∗2 −D∗mod,2 × κ∗

D∗mod,1 × κ∗2 −D∗mod,2 × κ∗1

)

K2 = − P
P2
×

(
D∗mod × κ∗1 −D∗mod,1 × κ∗

D∗mod,2 × κ∗1 −D∗mod,1 × κ∗2

)
.

Exercise N◦ 10 (Exercise N◦ 08 and 09, continued; duration-convexity hedging).

(i) The modified duration and convexity of the short-maturity ZCB are given by D∗zcb,1 = 2 and
κ∗zcb,1 = 4. In the case of the long-maturity one, we have D∗zcb,2 = 10 and κ∗zcb,2 = 100.

(ii) K1 = −0.4562 and K2 = −1.1737. This means that, to hedge against both small and large
changes in interest rates, the corporation must short 0.4562 units of the 2-year ZCB, and
1.1737 units of the 10-year ZCB.

(iii) The following Table 3 illustrates the performance of the hedging strategy under the three
scenarios presented and analyzed in Exercise N◦ 08:

Yield Curve Shift CB(0, T ) B(0, T2) B(0, T1) K1 K2 dΠ

Initial Values 103.58 63.76 91.39 -0.4562 -1.1737
dR = 0.1% 102.75 63.13 91.21 -0.4562 -1.1737 0.0000
dR = 1% 95.63 57.69 89.58 -0.4562 -1.1737 0.0003
dR = 2% 88.38 52.20 87.81 -0.4562 -1.1737 0.0023

dR = −0.1% 104.41 64.40 91.58 -0.4562 -1.1737 0.0000
dR = −1% 112.29 70.47 93.24 -0.4562 -1.1737 -0.0003
dR = −2% 121.84 77.88 95.12 -0.4562 -1.1737 -0.0027

As we would expect, the changes of the hedged portfolio are much smaller than under duration
hedging, even for relatively large variation in the term structure.
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Exercise N◦ 11.

Given that we have:

B(t, t+ h) = G0(h) for h ∈ [h0, h1) ,

= G0(h) +G1(h) for h ∈ [h1, h2) ,

= G0(h) +G1(h) + . . .+Gj(h) for h ∈ [hj , hj+1) ,

etc.

For h ∈ [0, h1), we find:

B(t, t+ h) = α0 + β0h+ γ0h
2 + δ0h

3 ,

and since B(t, t) = 1 ⇒ α0 = 1 ,

⇒ B(t, t+ h) := B0(t, t+ h) = 1 + β0h+ γ0h
2 + δ0h

3 .

(1)

For h ∈ [h1, h2), we therefore can write:

B(t, t+ h) := B1(t, t+ h) = (1 + β0h+ γ0h
2 + δ0h

3)

+[α1 + β1(h− h1) + γ1(h− h1)2 + δ1(h− h1)3] .
(2)

If we apply condition i) to relations (1) and (2) we respectively find:

limh→h−1
B0(t, t+ h) = 1 + β0h1 + γ0h

2
1 + δ0h

3
1 ,

limh→h+1
B1(t, t+ h) = (1 + β0h1 + γ0h

2
1 + δ0h

3
1) + α1 ,

B1(t, t+ h1) = (1 + β0h1 + γ0h
2
1 + δ0h

3
1) + α1 ,

thus, condition i) implies : α1 = 0 .

Now if we differentiate B0(t, t+ h) and B1(t, t+ h) we respectively find:

B0(t, t+ h)′ = β0 + 2γ0h+ 3δ0h
2 , h ∈ [0, h1) ,

B1(t, t+ h)′ = β0 + 2γ0h+ 3δ0h
2 + β1

+ 2γ1(h− h1) + 3δ1(h− h1)2 , h ∈ [h1, h2) .

(3)

This means that condition ii) is satisfied if and only if β1 = 0. Now, if we differentiate again the
two relations in (3) we find:

B0(t, t+ h)′′ = 2γ0 + 6δ0h , h ∈ [0, h1) ,

B1(t, t+ h)′′ = 2γ0 + 6δ0h+ 2γ1 + 6δ1(h− h1) , h ∈ [h1, h2) .
(4)
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Consequently, condition iii) implies γ1 = 0.

Exercise N◦ 12.

We have a Rp-valued square-integrable random vector X = (x1, . . . , xp)
′ with mean vector µ = E[X]

and variance-covariance matrix Σ = V[X].

a) Given that the variance-covariance matrix Σ is symmetric and positive semi-definite, from the
Jordan Decomposition Theorem, we can write:

Σ = ΓΛΓ′ =

p∑
j=1

λjγjγ
′
j , where Λ = diag(λ1, . . . , λp) , (where λj ’s are the eigenvalues of Σ) ,

Γ = (γ1, . . . , γp) is an orthogonal matrix (Γ−1 = Γ′, i.e. γ′iγj = 0 ∀i 6= j

with ||γj || = 1) where the jth column is the jth eigenvector γj of Σ .

b) Given that Σ is (not only symmetric but also) positive semi-definite, we have that λj ≥ 0
∀j ∈ {1, . . . , p}. Let us prove this property of semi-definite matrices. The proof is based, first of
all, on the definition of Quadratic Form, Definiteness of Quadratic Forms and Matrices.

Quadratic Form : A Quadratic Form Q(x) is built from a (p×p) symmetric matrix A and a vector
x ∈ Rp: Q(x) = x′Ax =

∑p
i=1

∑p
j=1 aijxixj .

Definiteness of Quadratic Forms and Matrices : A Quadratic Form Q(x) is positive definite if
Q(x) > 0 ∀x 6= 0. It is positive semi-definite if Q(x) ≥ 0 ∀x 6= 0. A symmetric matrix A is
called positive definite (semi-definite) if the corresponding quadratic form Q is positive definite
(semi-definite). They are denoted A > 0 and A ≥ 0, respectively.

Theorem [Quadratic Forms can always be diagonalized] : If A is symmetric and Q(x) = x′Ax is
the corresponding quadratic form, then there exist a transformation x 7→ y = Γ′x such that :
x′Ax =

∑p
i=1 λiy

2
i . Indeed, from JD theorem we have A = ΓΛΓ′ and, assuming y = Γ′x, we have

that x′Ax = x′ΓΛΓ′x = y′Λy =
∑p

i=1 λiy
2
i .

Theorem : The symmetric matrix A is positive definite if and only if λi > 0 ∀i ∈ {1, . . . , p}; A is
positive semi-definite if and only if λi ≥ 0 ∀i ∈ {1, . . . , p}.

Proof (of positive semi-definite): 0 ≤ λ1y
2
1 + . . .+λpy

2
p = x′Ax for all x 6= 0 by the above mentioned

theorem about the diagonalization of quadratic forms.

c) The Principal Component transform of X is given by Y = Γ′(X−µ). This means that : E[Y ] = 0
and V[Y ] = Γ′ΣΓ = Γ′(ΓΛΓ′)Γ = Λ. Given that Λ is a diagonal matrix having in the main diagonal
the p eigenvalues of Σ, namely (λ1, . . . , λp)

′, we have that each principal component Yj has variance
V[Yj ] = λj and it is uncorrelated with the others.

d) The proof of this result is based on the following :
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Theorem [Maximizing Quadratic Forms under Constraints] : If A and B are symmetric and B > 0,
then the maximum of x′Ax under the constraints x′Bx = 1 is given by the largest eigenvalue of
B−1A. More generally:

max{x :x′Bx=1} x
′Ax = λ1 ≥ λ2 ≥ . . . ≥ λp = min{x :x′Bx=1} x

′Ax ,

where (λ1, . . . , λp) are the eigenvalues of B−1A. The vector which maximizes (minimizes) x′Ax un-
der the constraints x′Bx = 1 is the eigenvector of B−1A which corresponds to the largest (smallest)
eigenvalue of B−1A.

Now, we have to determine:

max{δ:||δ||=1}V[δ′X] = max{δ:||δ||=1} δ
′V[X]δ

= max{δ:||δ||=1} δ
′Σδ .

The solution of this problem is obtained from the above mentioned theorem denoting x = δ and
assuming A = Σ and B = Ip, where Ip denotes the (p×p) identity matrix. We immediately obtain:

max{δ:δ′δ=1} δ
′Σδ = λ1 , where λ1 is the

largest eigenvalue of B−1A = Σ.

The vector who maximizes δ′Σδ is therefore the eigenvector of Σ which corresponds to λ1, that is
γ1. We have therefore:

max{δ:||δ||=1}V[δ′X] = V[γ′1X] = γ′1Σγ1 = λ1.

The last equality is also deduced from the JD of Σ: Σ = ΓΛΓ′ ⇒ Γ′ΣΓ = Λ (remember that
Γ′ = Γ−1).

Exercise N◦ 13.

We have that:

f(t, t+ h) = B0(h) +B1(h) +B2(h) , where B0(h) = β0 , B1(h) = β1 e
(−h / θ) ,

B2(h) = β2
h

θ
e(−h / θ) , θ > 0 .

a) The role of B0(h) = β0 (assuming β0 6= 0) - Given θ > 0 we have:

limh→∞ f(t, t+ h) := f(t, t+∞) = β0 = B0(h) .

This means that, as far as h increases toward +∞, the term B0(h) = β0 participate in the
determination of the rate with increasing weight. Indeed, for h infinitely big, the (so called)
long-term forward rate is β0. For this reason we say that B0(h) = β0 determines mostly the
forward rates with large residual maturity.
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b) The role of B1(h) = β1 e
(−h / θ) (assuming β1 6= 0) - We have that B1(h) is a monotonic

function. Indeed:
B1(h)|h=0 = β1 , limh→+∞B1(h) = 0 ,

dB1(h)

dh
= −β1

θ
e−h/θ 6= 0 ∀ h > 0 .

From the last relation we deduce that B1(h) is monotone decreasing (increasing) if β1 > 0
(β1 < 0). In any case, the weight of B1(h) in determining f(t, t + h) is mostly important
when h is close to zero: this means that B1(h) mostly affects short-term forward rates.

c) The role of B2(h) = β2
h

θ
e(−h / θ) (assuming β2 6= 0) - In this case, the function B2(h) is not

monotonic given that:

B2(h)|h=0 = 0 , and limh→+∞B2(h) = 0 ;

dB2(h)

dh
=

1

θ
e−h/θ

[
β2

(
1− h

θ

)]
∀h > 0 ;

dB2(h)

dh
= 0 ⇔ h = θ ;

This means that we are always able to find a residual maturity h (that equal to the positive
number θ) such that B2(h)′ = 0. Consequently, the weight of B2(h) in determining f(t, t+h)
is most important for time to maturities around θ. For that reason, we says that it mostly
affects, compared to B1(h), the medium-term forward rates.

d) Interpretation of β0 - The constant term B0(h) = β0 determines the level around which the
curve flatten when h→∞. This means that, not only it mostly determines long-term rates,
but also constitutes a level for the entire term structure of forward rates. For this reason, β0

is seen as a level parameter.

e) Interpretation of β1 - We have that limh→0 f(t, t+ h) = f(t, t) = r(t) = β0 + β1. Now, given
f(t, t+∞) = β0, we have that β1 measures the difference between the very short and very long
part of the term structure of forward rates. For that reason, β1 is seen as a slope parameter.

f) Interpretation of β2 - We easily observe that:

dB2(h)

dh
> 0 iff β2 > 0 and h < θ ; or β2 < 0 and h > θ .

Thus, if β2 > 0, B2(h) is positive and it is first increasing (for h < θ) and then decreasing
(for h > θ) toward zero. Otherwise, if β2 < 0, B2(h) is negative and it is first decreasing
(for h < θ) and then increasing (for h > θ) toward zero. This means that, in the single non-
monotonic term, namely B2(h), β2 determines if there is an upward or downward “hump”.
For that reason, we can see β2 as a curvature parameter.
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