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2.1.1 Introduction

� Interest rates change substantially over time, and their variation poses large

risks to financial institutions, portfolio managers, corporations, government and

households.

� This chapter discusses the basics of interest rate risk management.

� In particular, we discuss how to measure risk for fixed income instruments, by

introducing the notion of duration and convexity.
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From Veronesi (2010, Chapter 3)
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� Example: The Savings and Loan Debacle in the 1980s is a standard example

of what can go wrong when interest rates shift.

� A Savings and Loan (S&L, say) is a kind of bank that earns a large part of

its revenues from the difference between the long-term mortgages it provides to

home owners and the short-term deposit rate it offers to depositors.

� When interest rates increased at the end of the 1970s, S&L were receiving their

fixed coupons from mortgages contracted in the past, when rates were low, BUT

suddenly they had to pay interest on deposits at the new higher deposit rates.

7



� Because depositors could choose were to put their money, banks were forced to

offer high deposit rates, otherwise depositors would withdraw their deposits and

invest in other securities, such as Treasuries.

� A withdraw of funds is the worst nightmare for a bank, as depositor’s money is

not in the bank any longer: it has been loaned to others (to firms).

� The spread between the rate earned on assets and the (higher) rate paid on

liabilities quickly put many S&L out of business.
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� The example above calls for:

(a) a systematic methodology to assess the riskiness of a bond portfolio to move-

ments in interest rates;

(b) and a methodology to effectively manage such risk.

� Let us tackle the former problem thanks to the concept of Duration.
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2.1.2 Duration

� Definition: The Duration of a coupon bond (a security) with price CB is the

(negative of the) percent sensitivity of the price CB to a small parallel shift in

the level of interest rates. That is, let Y (t, T ) be the term structure of interest

rates at time t.

– Consider a uniform shift of size dY across rates that brings the yield curve

to Y ∗(t, T ) = Y (t, T ) + dY thus inducing CB∗ = CB + dCB.

– The duration (approximately) measures the magnitude of dCB induced by

dY .
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� It is a measure of the sensitivity of the coupon bond price to a change (a shift!)

in interest rates.

� We use the yield to maturity Y CB(t, T ) = Y of the bond as a proxy of the whole

term structure of interest rates. Indeed, this YTM can be seen as an average of

the spot rates discounting the risk-less cash flows.

� If the term structure of interest rates is flat, then the YTM is the term structure.

� How the duration of a coupon bond is calculated ? There are two main defini-

tions: the Macaulay Duration and the Modified Duration.
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� The coupon bond price (assuming annual payments) at date t = 0 is given by:

CB(0, T ) =
T∑
i=1

(Ci)× (1 + Y )−i ,

and it is a non-linear function of Y .

� Differentiating CB(0, T ) with respect to Y gives:

dCB(0, T )

dY
= −

1

1 + Y

T∑
i=1

(i× Ci)× (1 + Y )−i .

� We multiply both sides of the equation by dY/CB(0, T ) to get:

dCB(0, T )

CB(0, T )
= −

1

1 + Y
×

T∑
i=1

(i× Ci)× (1 + Y )−i

T∑
i=1

(Ci)× (1 + Y )−i

dY .
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� We define the Duration D as:

D =

T∑
i=1

(i× Ci)× (1 + Y )−i

T∑
i=1

(Ci)× (1 + Y )−i

=
T∑
i=1

i×
Ci × (1 + Y )−i

CB(0, T )
,

� We can now write dCB(0, T )/CB(0, T ) as:

dCB(0, T )

CB(0, T )
= −

D

1 + Y
dY ⇒ D = −

dCB(0, T )

CB(0, T )
×

(1 + Y )

dY
.

� D is called the Macaulay duration, and it is the weighted average of coupon

dates (expressed in years) until the maturity of the bond, with the weights being

the present values of the cash flows divided by the bond price.
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� It acts as a measure of first-order sensitivity of the bond price with respect to

changes in the YTM (or parallel shift of the flat term structure).
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� Thus, Duration can be used to approximate/predict bond price changes, given

a (very small!) change in the YTM.

� Let us consider at date t = 0 a coupon bond with a constant coupon rate c,

a face value of CT and time to maturity T . Let us denote with CB(0, T ) the

bond price, CBc(0, T ) the present value of coupon payments, and CBCT(0, T ) the

present value of the principal payment. Then:

CB(0, T ) = CBc(0, T ) + CBCT(0, T ) ,

with CBc(0, T ) =
T∑
i=1

(c× CT)× (1 + Y )−i = (c× CT)
1− (1 + Y )−T

Y
,

and CBCT(0, T ) = CT(1 + Y )−T .
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� From previous relationships we can write:

D = −
(1 + Y )

CB(0, T )

dCB(0, T )

dY
= −

(1 + Y )

CB(0, T )
×
(
dCBc(0, T )

dY
+
dCBCT(0, T )

dY

)
,

� and
dCBc(0, T )

dY
=
−CBc(0, T )

Y
+

(Tc)CBCT(0, T )

Y (1 + Y )
,

dCBCT(0, T )

dY
=

−CTT
(1 + Y )T+1

=
−CBCT(0, T )T

1 + Y
.

� We thus obtain the following closed-form formula for D:

D =
CBc(0, T )

CB(0, T )

(
1 +

1

Y

)
+
CBCT(0, T )

CB(0, T )

(
1−

c

Y

)
T .
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Special cases of this formula include:

a) Zero-coupon bonds : c = 0 and thus CBc(0, T ) = 0 and CBCT(0, T ) = CB(0, T )

with CT = 1. This means that D = T : the duration of a ZCB is equal to its

residual maturity.

b) Perpetuities : there is no final repayment (CBCT(0, T ) = 0 and CB(0, T ) =

CBc(0, T )) in this case; we thus obtain D = (1 + Y )/Y .

c) Par bonds : by definition, a par bond is a coupon bond such that c = Y and

thus CB(0, T ) = CT . Then:

D = (1− (1 + Y )−T)×
(

1 +
1

Y

)
.
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� Another well known measure of duration, the Modified Duration, is given by:

Dmod =
D

1 + Y
, so that

dCB(0, T )

CB(0, T )
= −Dmod × dY ⇒ Dmod = −

1

dY
×
dCB(0, T )

CB(0, T )
.

• Example 1: A $100 million bond has modified duration equal 10, Dmod = 10.

→ This implies that one basis point increase in the level of interest rates dY = .01%

generates a swing in the bond value of:

dCB = −10 × $100 million ×
0.01

100
= −$100,000 .

↪→ That is, the investor stands to lose 100,000 for every basis point increase in the

(flat) term structure.
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• Example 2: An investor has $100 million invested in 5-year ZCBs, thus Dmod =

5 (years).

→ This implies that one basis point increase in the level of interest rates dY = .01%

generates price reduction of:

dB = −5 × $100 million ×
0.01

100
= −$50,000 .

↪→ That is, the investor stands to lose 50,000 for every basis point increase in the

(flat) term structure.
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2.1.3 Properties of Coupon Bond Duration

� For a given time to maturity and YTM, the duration decreases as the coupon

rate increases:

– the higher the coupon rate, the larger are the cash flows in the near future

compared to long-term future. Cash flows that arrive sooner rather than

later are less sensitive to changes in interest rates.

– Thus an increase in ci implies lower sensitivity to changes in the discount rate

(1 + Y )−i (or B(t, T )).
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� For a given time to maturity and coupon rate, duration decreases as the YTM

increases.

– a higher YTM implies that short-term cash flows have a relatively higher

weight in the value of the bond, and thus a lower sensitivity to changes in

YTM.

� For a given coupon rate and YTM, the duration increases as the maturity in-

creases.
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2.1.4 Duration of a Portfolio

� Consider a portfolio of M = 2 securities: the portfolio is made of N1 units of

security 1, and N2 units of security 2. Let P1 and P2 be the prices of these two

securities. The value of the portfolio is then Π = N1 × P1 +N2 × P2.

→ The duration of these two assets is

Dmod,i = −
1

Pi
×
dPi

dY
, i ∈ {1,2} .

→ The duration of the portfolio is:

Dmod,Π = −
1

Π
×
dΠ

dY
= −

1

Π
×
d(N1 × P1 +N2 × P2)

dY
= −

1

Π

[
N1 ×

dP1

dY
+N2 ×

dP2

dY

]
24



� The duration of the portfolio can thus be written :

Dmod,Π =
1

Π

[
N1 × P1 ×

(
−

1

P1

dP1

dY

)
+N2 × P2 ×

(
−

1

P2

dP2

dY

)]
= π1Dmod,1 + π2Dmod,2 ,

with πi =
Ni × Pi

Π
, i ∈ {1,2}.

� The duration of a portfolio of M securities is therefore:

Dmod,Π =
M∑
i=1

πiDmod,i .

→ the duration of the portfolio is a weighted average of the durations of the bonds

in the portfolio, if all the bonds have the same YTM.
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� Example 3: A bond portfolio manager has $100 million invested in 5-year

ZCBs and $200 million invested in 10-year ZCBs. What is the impact of a one

basis point parallel shift of the term structure on the value of the portfolio?

� We can answer this question by computing the duration of the portfolio: The

5-year and 10-year ZCBs have duration of 5 and 10, respectively. The total

portfolio value is $300 million.

→ The duration of the portfolio is : Dmod,Π =
100

300
5 +

200

300
10 = 8.3. Therefore, a

one basis point increase in interest rates generates a portfolio loss of:

$300 million × 8.3 × 0.01% = $249,000.
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2.1.5 Dollar Duration

� The previous definitions of Durations implicitly assume that the today’s price of

the asset is strictly positive: CB > 0, Π > 0. However, in many cases the assets

or the portfolio we are interested in have a value exactly equal to zero. In that

case we resort to the Dollar Duration.

� Definition: The Dollar Duration D$ of a security P and portfolio Π are

D$
P = −

dP

dY
, D$

Π =
M∑
i=1

NiD
$
i

� Definition: The price value of a basis point, denoted PV01 or PVBP, of a

security P is defined by PV 01 = D$
P × dY .
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� The concept of Duration we have just presented is based on the following as-

sumptions: i) YTM or interest rates variations are infinitesimal, ii) the term

structure of interest rates is flat, and iii) shift in the term structure are parallel:

→ implicitly, there is only one particular risk factor: the one producing the in-

finitesimal parallel shift in the flat term structure.

� Starting from the next slide we relax assumption i) and discuss the notion of

Convexity of a bond.

� Then we show why assumptions ii)-iii) can (seem to) generate risk-less arbitrage.
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2.1.6 Convexity

� Let us consider now a Taylor expansion of the coupon bond price considered as

function of the yield to maturity, namely CB(0, T ) = CB(Y ):

CB(Y ) = CB(Y0) +
dCB(Y )

dY
|Y=Y0

(Y − Y0) +
1

2

d2CB(Y )

dY 2
|Y=Y0

(Y − Y0)2 + . . .

where Y0 and Y denotes the YTM before and after the variation.

� Let us limit ourselves to the first two terms of the expansion to get:

∆CB(Y ) =
dCB(Y )

dY
|Y=Y0

∆Y +
1

2

d2CB(Y )

dY 2
|Y=Y0

(∆Y )2 ,

where ∆CB(Y ) = CB(Y )− CB(Y0) and ∆Y = Y − Y0 (not infinitesimal!).
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� If we divide the LHS and RHS of that relation by CB(Y ) we obtain an expression

of the relative price change as a function of a (modified) duration term and a

convexity term:

∆CB(Y )

CB(Y )
= −Dmod∆Y +

κ

2
(∆Y )2 ,

where Dmod = −
dCB(Y )

dY

1

CB(Y )
,

and κ =
1

CB(Y )

d2CB(Y )

dY 2
is the convexity .

� For bond with fixed, risk-less cash flows, we can differentiate CB(0, T ) =
∑T

i=1(Ci)×

(1 + Y )−i twice with respect to Y to get:

d2CB(Y )

dY 2
=

2C1

(1 + Y )3
+

6C2

(1 + Y )4
+ . . .+

T (T + 1)CT
(1 + Y )T+2

.
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� Convexity in this case is:

κ =

T∑
i=1

(i× (1 + i)× Ci)
(1 + Y )i+2

T∑
i=1

Ci

(1 + Y )i

=
T∑
i=1

(i× (1 + i)× Ci)
(1 + Y )i+2

/CB(0, T )

� Duration is a linear approximation to the sensitivity of the bond price to changes

in the YTM (parallel shift of the flat term structure). Convexity provides a

second-order approximation of that sensitivity.

� Convexity, like duration, generally increases with maturity and decreases with the

coupon rate and the YTM.

� The convexity of the ZCB is κ =
T (T + 1)

(1 + Y )2
.
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� In the case of continuously compounded YTM R, the convexity of the ZCB is

κ = T 2.

� The convexity of the portfolio is:

κΠ(Y ) =
d2Π(Y )/dY 2

Π(Y )
=

M∑
m=1

πmκm(Y )

where κm(Y ) denotes the convexity of the m-th bond in the portfolio.

→ the convexity of the portfolio is a weighted average of the convexities of the

bonds in the portfolio (if all the bonds have the same YTM).
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� Example 4: A corporation has $100 million (par) of a 10-year coupon bond that

pays a 5% semi-annual coupon. Assume that the term structure of the interest

rates is flat at Y = 4.5%. The price of the bond is CB = $103.58, implying

a position of $103.50 million, a (modified) duration of D = 8.03 and convexity

κ = 73.87.

� If Y moves from 4.5% to 5.5%, the new price decline to $95.63 with an associated

exact loss of dCB/CB = −7.67%.

� With a duration-base approximation, we have a loss of:

dCB

CB
≈ −D × 0.01 = −0.0803 ≈ −8% .
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→ Adding a convexity term instead entails a more precise approximate loss of:

dCB

CB
≈ −D × 0.01 +

1

2
κ (0.01)2 = −0.07662 ≈ −7.66% .

� In other words, the Duration and Convexity measure of
dCB

CB
is more precise than

the Duration only measure.
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2.1.7 Only one risk factor in the ”Duration-Convexity setting”

� The concepts of Duration and Convexity, presented in the previous slides, as-

sumed parallel shift of a flat term structure.

� This means that in the Duration-Convexity setting there is only one “FACTOR”

determining bond price variations over time and for any residual maturity. In

other words, there is only one source of risk. It is the YTM Y which is identified

with the flat yield curve.

� In reality, the yield curve is not flat: see the two following graphs.
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� It does not move in parallel fashion (distance is not the same).
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� The yield curve is characterized by time variations in its average level, slope and

curvature.

� The single factor Y can be identified with the average LEVEL of interest rates.

� The time series of the Term Spread = R(t, t+ 5y)−R(t, t+ 1m) can be seen as

a measure of the variation over time of the yield curve SLOPE.

� The time series of the Butterfly Spread = −R(t, t+ 1m) + 2R(t, t+ 1y)−R(t, t+

5y) can be seen as a measure of the variation over time of the yield curve

CURVATURE.
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⇒ We need for more FACTORS organized by sophisticated interest rate models

able to:

– account for (to explain!) a non-flat term structure

– moving over time and maturities in a realistic way (i.e. close to the data :

time varying level, slope and curvature)

– and compatible with the no-arbitrage principle (i.e. a set of “fair” prices).
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2.1.8 Is there really a Free Lunch in the Duration model ?

� Are the parallel shifts of the term structure (implicit in the Duration setting)

acceptable, in the sense that they do not allow for “free lunch” ?

� If such free lunch was possible, then these assumptions should be revised in

order to better explain the reality of bond markets : there are very few arbitrage

opportunities!
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� An arbitrage opportunity is a feasible trading strategy involving two or more

securities with either of the following characteristics :

a) it does not cost anything at initiation, and it generates a sure positive profit

by certain date in the future;

b) it generates a positive profit at initiation, and it has a sure non-negative payoff

by a certain date in the future.

� The no-arbitrage condition requires that no arbitrage opportunities exist.

� see Veronesi (2010).
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� The presumption of a free lunch in the “Duration setting” comes from the

following fact:

→ two portfolios having the same value (=price) and the same duration will gen-

erally have different convexities.

↪→ in a world where movement in flat term structure are parallel, a strategy where

one buy the high-convexity portfolio and sells the low-convexity one seems to be

an arbitrage opportunity.
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The Example:

� Let us consider at date t = 0 a portfolio A of a 5-year zero-coupon bond (with

price B(0,5)), and a portfolio B invested in 1-year and 10-year zero-coupon

bonds (with price B(0,1) and B(0,10), respectively).

� The relative weights on 1-year and 10-year ZBCs are chosen such that portfolios

A and B have the same value and the same modified duration. Portfolio B is

called “barbell portfolio”.

� Let us denote by q1 and q10 the number of 1-year and 10-year ZCBs in portfolio

B, and by Dmod,i the modified duration of an i-year ZCB.
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� We have the following linear system:

B(0,5) = B(0,1)q1 +B(0,10)q10 (equal value constraint) ,

=⇒ B(0,5)Dmod,5 = (B(0,1)Dmod,1)q1 + (B(0,10)Dmod,10)q10

(duration-matching constraint) .

� Let us assume that all bonds have a face value of 100 and interest rates are 5%

(flat term structure), then:

B(0,1) = 100(1.05)−1 = 95.238 , B(0,5) = 100(1.05)−5 = 78.353 ,

B(0,10) = 100(1.05)−10 = 61.391 , Dmod,1 = 1
1.05

= 0.952 year ,

Dmod,5 = 5
1.05

= 4.762 years , Dmod,10 = 10
1.05

= 9.524 years .

� The system simplify to:

78.353 = 95.238q1 + 61.391q10 ,

373.108 = 90.703q1 + 584.676q10 ⇒ q1 = 0.457 and q10 = 0.576.
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� Which of portfolio A or portfolio B is more convex? From the ZCB convexity

formula we obtain : κ1 = 1.81, κ5 = 27.21 and κ10 = 99.77. The convexity of

the portfolio B is therefore:

κB =
B(0,1)q1κ1 +B(0,10)q10κ10

B(0,1)q1 +B(0,10)q10
≈ 45

while the convexity of portfolio A is κA = κ5 = 27.21 ⇒ κB > κA.

� The free lunch (in this simple setting) is obtained selling portfolio A (intermediate

maturity) and buying portfolio B (at date t = 0). To illustrate this point, let us

imagine that the term structure has a upward shift (to 6%) or a downward shift

(to 4%) (like a binomial distribution).
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� Starting from the rate Y = 5% we have ΠA(5%) = ΠB(5%) = 78.353. We buy

portfolio B (with large convexity) and we sell A (smaller convexity) and thus we

have zero net profit at t = 0.

� If, at t = 1, we move to the up scenario, ΠB(6%) = 74.79 > ΠA(6%) = 74.73,

and if we move to the down scenario we have ΠB(4%) = 82.27 > ΠA(4%) =

82.19.

↪→ At t = 1, portfolio B is always more valuable than portfolio A, and therefore I

earn the difference once I close the position. I have a positive return exploiting

the convexity.
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⇒ Free Lunch !...apparently !

� When we move from date t = 0 to date t = 1 (where we find up/down scenario),

we assume that the 3 ZCBs maintain the same residual maturity.

� We have proposed a “very (very!) simple” example interested to highlight the

limit of the Duration model, as we have done with the level-slope-curvature

analysis of the observed U.S. yield curves.
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� In reality, the convexity trading strategy does not represent an arbitrage oppor-

tunity. Why ? Because, in this analysis we do not take into account the time

dimension that naturally affects bond prices over time.

� For instance, a ZCB price can increases over time simply because times passes

(and it approaches the maturity date), even if interest rates do not move.

� What happens ? The gain in value from higher convexity is compensated by

a lower gain due to the passage of time (in dynamic investment strategy this

relation is known as the Theta-Gamma relation).
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2.2.1 Introduction

� We have seen during Lecture 1 how important is the Discount Function

B(t, T ):

i) The associated (continuously compounded) ZCB Yield Curve R(t, T ) = − lnB(t,T )
T−t

provides a clear picture of how date-t spot interest rates changes as a function

of the maturity date T .

57



ii) From B(t, T ) or R(t, T ), we can determine the forward rate curve R(t, τ, T ) or

the par yield curve ρ(t, T ):

↪→ the first one provides a date-t information of future spot rates.

↪→ the second one gives the date-t market interest for a bullet bond.

iii) We have seen that a coupon bond can be interpreted as a portfolio of ZCBs :

C1 units of ZCBs maturing at T1, C2 units of ZCBs maturing at T2, . . . etc. :

CB(t, T ) =
n∑
i=1

1{t<Ti}CiB(t, Ti).
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� In most markets only a few ZCBs are traded, so that information about the

discount function must be inferred from market prices of coupon bonds.

� The purpose of this lecture is to present methods to extract or estimate the

term structure of interest rates from prices of coupon bonds at a given date.

� In Section 2.2.2 I will present the so-called bootstrapping technique, based on

the construction of ZCB prices by means of certain portfolios of coupon bonds.

↪→ this is possible only in bond markets with sufficiently many coupon bonds

with regular payment dates and maturities.
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� In Sections 2.2.3 and 2.2.4 I will present two alternative techniques based on

the assumption that the discount function B(t, T ) is specified as a function of

unknown parameters (and the time-to-maturity T − t): B(t, T ) = f(t, T, θ):

a) the vector of unknown parameters θ is estimated in order to obtain the best pos-

sible fit (for a given estimation criterion) of observed bond prices by theoretical

ones.

b) f(t, T, θ) is typically a polynomial, or an exponential function of the time-to-

maturity τ = T − t (for a given t) or some combination.
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c) this is consistent with the idea that B(t, T ) and R(t, T ) are continuous and smooth

function of τ . Indeed, if R(t, T1) >> R(t, T1 + ε) :

⇒ Bond owners would probably shifts from low-yield to high-yield bonds, and

bond issuers would shift to the low-yield maturity. These changes in the sup-

ply and demand will determine a reduction of the gap driving R(t, T1) close to

R(t, T1 + ε).
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2.2.2 Bootstrapping technique

� Several bond markets issue and trade a very small number of zero-coupon bonds.

Usually, such zero-coupon bonds have a very short maturity.

� If we want to determine market zero-coupon yields for longer maturities, we have

to extract information from the prices of traded coupon bonds. In some (not

all!) markets we have the possibility to construct some longer-term zero-coupon

bonds by forming portfolios of traded coupon bonds.

� Market prices of these ”synthetical” zero-coupon bonds and the associated zero-

coupon yields can then be derived. Let us start from a simple example.

62



Example - Consider a bond market at date t where two bullet bonds are traded.

A ZCB expiring in one year and selling for CB(t, t + 1) = 97 and a coupon

bond, with an annual coupon rate of 5%, expiring in two years and selling for

CB(t, t+ 2) = 95. Both have annual payments and face value of 100.

− from the traded ZCB : 97 = 100×B(t, t+ 1) ⇒ B(t, t+ 1) = 0.97 and thus

R(t, t+ 1) = − lnB(t, t+ 1) = 0.03046.

− from the traded CB :

95 = 5×B(t, t+ 1) + 105×B(t, t+ 2)

= 5× 0.97 + 105×B(t, t+ 2) ⇒ B(t, t+ 2) = 0.8586 ,

and thus R(t, t+ 2) = −1
2

lnB(t, t+ 2) = 0.07623.
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� From the last relation we observe that:

B(t, t+ 2) =
1

105
CB(t, t+ 2)−

5

105
B(t, t+ 1) ,

we can construct a ZCB with residual maturity of 2 years as a portfolio of 1/105

units of CB(t, t+ 2) (sell) and −5/105 units of the 1-year ZCB (buy).

� This simple example considers only 2 bonds associated to the maturities t + 1

and t+2. This setting can easily be generalized to more periods and more assets.
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� Let us assume to have, at date t, M coupon bonds with:

– regularly increasing maturities {t+ 1, t+ 2, . . . , t+M}, respectively,

– coupon payments at each period

– and occurring at the same dates.

� In that case, we can construct recursively (as in the example!) the market

discount factors B(t, t+ 1), B(t, t+ 2), . . . , B(t, t+M) and the associated yield to

maturities R(t, t+ 1), R(t, t+ 2), . . . , R(t, t+M).

� We are able to construct a finite set of points of the yield curve, and up to t+M .

This methodology is called bootstrapping or yield curve stripping.
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� The yield curve stripping also applies to the case where the maturity dates of

the M bonds are not all different and regularly increasing as in the previous case.

� Let us consider M bonds having at most M different payment dates. Let us

denote the payment of the coupon bond i ∈ {1, . . . ,M} at time t + j, with

j ∈ {1, . . . ,M}, by Ci,j. We can organize all these cash flows in a square matrix

C = (Ci,j).

� Clearly, some of the elements Ci,j may be zero (e.g., if the maturity date is before

t+M).
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� Let us organize the coupon bond and ZCB prices in the vectors P = [CB(t, t +

1), . . . , CB(t, t+M)]′ and B = [B(t, t+ 1), . . . , B(t, t+M)]′.

� From the relation between coupon bond and ZCB prices we can write:

P = C×B

� Given this linear system based on the (M ×M) square matrix C, if the bonds

payments are such that C is non-singular (e.g., at any date there is at least a

payment), then a unique solution for B exists: B = C−1P.
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� Observe that the bootstrap method is able to construct ZCB prices, that is, spot

rates, for a finite number of maturities, while the term structure of interest rates

is a curve.

� What we do if we need the discount factor for an intermediate maturity (e.g., 2

years and 3 months)?

→ We can interpolate ! Let us imagine to know the interest rates R(t, Ti) and

R(t, Ti+1) at the maturities Ti and Ti+1 (respectively) and let us assume that we

are interested to find the yield with maturity Tj ∈ (Ti, Ti+1).
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� By linear interpolation we have:

R(t, Tj) =
(Tj − Ti)×R(t, Ti+1) + (Ti+1 − Tj)×R(t, Ti)

Ti+1 − Ti
;

we are simply drawing lines between the points (Ti, R(t, Ti)) and (Ti+1, R(t, Ti+1)).

� The implementation of the bootstrap method is based on several assump-

tions/limits about the available coupon bonds we use to extract the market

discount factors (and the associated yield to maturities).
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� Namely :

i) we cannot construct a yield R(t, T ) for T > M ;

ii) we can extract only a finite number of yields and the use of interpolation

generate non smooth (spot and forward) curves;

iii) we need one payment date at each period and identical payment dates or,

more generally, the square matrix C has to be non-singular.
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� What happens if C is not square ? That is, if

number M (say) of coupon bonds 6=

number m (say) of payment dates (i.e., maturities) ?

� Let us assume that M > m and let us present the following example. At date t

we have in the market three bonds:

a) a one-year bullet bond with an annual coupon rate of 10%, face value 100

and price CB(t, t+ 1) = 100;

b) a two-year bullet bond with an annual coupon rate of 5%, face value 100

and price CB(t, t+ 2) = 90;
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c) a two-year coupon bond (same payment dates as in b)) paying 58 in one year,

54 in two years, price SB(t, t+ 2) = 98 (it is called serial bond).

� The market discount factors B(t, t+1) and B(t, t+2) (i.e., the prices of the ZCBs

with unitary face value) must satisfy the following system of the 3 equations:

100 = 110B(t, t+ 1)

90 = 5B(t, t+ 1) + 105B(t, t+ 2)

98 = 58B(t, t+ 1) + 54B(t, t+ 2) .

� Let us denote:

A =

 110 0
5 105

58 54

 , b =

 100
90
98


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� We have : rank(A : b) = rank(A) + 1 ⇒ no solution exists! It does not exist

a system (B(t, t + 1), B(t, t + 2))′ of market discount factors, satisfying the no-

arbitrage principle, compatible with existing (at date t) coupon market prices.

� Remember : for a given m×n matrix A, and an associated linear system Ax = b,

we have:

rank(A : b) = rank(A) = n ⇒ unique solution ;

rank(A : b) = rank(A) < n ⇒ multiple solution ;

rank(A : b) = rank(A) + 1 ⇒ no solution .

� If we consider only the first two assets:

A =

[
110 0

5 105

]
, b =

[
100

90

]
⇒ B(t, t+ 1) = 0.9091 , B(t, t+ 2) = 0.8139 .
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� If we consider only the last two assets:

A =

[
5 105

58 54

]
, b =

[
90
98

]
⇒ B(t, t+ 1) = 0.9330 , B(t, t+ 2) = 0.8127 .

� If we take the first solution as “correct”, the no-arbitrage price of the serial bond

should be:

58× 0.9091 + 54× 0.8139 = 96.98 < 98.00 ,

� The market price at date t is “too expansive” (w.r.t. to the no-arbitrage prin-

ciple). In other words, the serial bond is mispriced relative to the two coupon

bonds: we can exploit this arbitrage opportunity selling the expensive serial

bond and buying a portfolio of the two bullet bonds that replicate the serial one.
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� What we typically observe in bond markets is that, at a given date t, the number

of bond prices M is much smaller than that of payment dates m (say) : M << m.

It happens in particular for long maturities where, typically, the number of bonds

is small.

� Thus : rank(A : b) = rank(A) < m ⇒ we have multiple solutions.

� Many set of discount factors can be compatible both with observed prices and

no-arbitrage principle.

� Moreover, several entries of C are equal to zero, because of bonds with (many)

different payment dates.
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� One can (try to) choose the data set such that cash flows are at the same points

in time and the matrix C is not entirely full of zeros.

� Nevertheless, the regression still has big problems!

� There are as many parameters as cash flow dates, and there is nothing to smooth

the discount curve found from the regression.
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� Thus, the discount factors of similar maturity can be very different.

� An alternative and preferable methodology would be to estimate a parametrized

smooth yield curve from the market rates (coupon bond prices).

� Indeed, in the next sections we focus on cubic splines, cubic B-splines and on

the Exponential-Polynomial class of curves (Nelson and Siegel (1987) family and

on the Svensson (1994) generalization).

77



2.2.3 Splines (see Munk (2008) and Filipovic (2009))

2.2.3.1 Cubic splines

� In this and in the following sections we will consider methods to estimate the

entire discount function T 7→ B(t, T ) (up to some large T ). For ease of ex-

position we will adopt the notation B(t, t + h) with h ≥ 0. A similar notation is

adopted for yields and forward rates: R(t, t+ h) and R(t, t+ τ, t+ τ + h).

� We will assume that the discount function be described by a parametric function

with parameter values estimated in such a way to get a close match between

the observed and theoretical bond prices.

78



� The methodology presented in this section is a version of the cubic splines ap-

proach introduced by McCulloch (1971) and then modified by McCulloch (1975)

and Litzenberger and Rolfo (1984).

� Let us imagine to observe, at date t, M bonds with maturity dates T1 ≤ T2 ≤

. . . ≤ TM . Now, we divide the time-to-maturity axis into subintervals defined by

the knot points 0 = h0 < h1 < . . . < hk = TM − t.

� A spline approximation of the discount function B(t, t+h) is based on an expres-

sion like:

B(t, t+ h) =
k−1∑
j=0

Gj(h)Ij(h)
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� The Gj(h)’s are basis functions, and the Ij(h) are step functions:

Ij(h) =

 1 if h ≥ hj

0 otherwise .

� In other words, we have:

B(t, t+ h) = G0(h) for h ∈ [h0, h1) ,

= G0(h) +G1(h) for h ∈ [h1, h2) ,

= G0(h) +G1(h) + . . .+Gj(h) for h ∈ [hj, hj+1) ,

etc.

� We require the Gj(h)’s functions to be continuous and twice differentiable and

ensuring a smooth transition in the knot points hj.
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� A polynomial spline is a spline with polynomials as basis functions. Let us

consider a cubic spline where:

Gj(h) = αj + βj(h− hj) + γj(h− hj)2 + δj(h− hj)3 ,

where αj , βj , γj and δj are constants .

� For h ∈ [0, h1), we have:

B(t, t+ h) = α0 + β0h+ γ0h2 + δ0h3 ,

since B(t, t) = 1 ⇒ α0 = 1 .

� For h ∈ [h1, h2), we have:

B(t, t+ h) = (1 + β0h+ γ0h2 + δ0h3)

+ [α1 + β1(h− h1) + γ1(h− h1)2 + δ1(h− h1)3] .

81



� To guarantee a smooth transition from the first to the second subinterval, that

is at the knot h = h1, we impose:

limh→h−1 B(t, t+ h) = limh→h+
1
B(t, t+ h) = B(t, t+ h1)

limh→h−1 B
′(t, t+ h) = limh→h+

1
B′(t, t+ h) <∞

limh→h−1 B
′′(t, t+ h) = limh→h+

1
B′′(t, t+ h) <∞ .

� The first condition ensures the continuity at the point h = h1. The second

condition guarantee that B(t, t+h) has no kink at h1 and the second one impose

a further degree of smoothness around h1.

� These three conditions imply (exercise!) : α1 = 0, β1 = 0 and γ1 = 0. Iterating

for the other knots, we similarly find αj = βj = γj = 0 for all j = 1, . . . , k − 1.
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� The cubic spline is therefore reduced to:

B(t, t+ h) = (1 + β0h+ γ0h2 + δ0h3) +
k−1∑
j=1

δj(h− hj)3Ij(h) .

� Let t1, t2, . . . , tm denote the time distance between the date t and each of the

payment dates in the set of all payment dates of the bonds we observe. Let Ci,j

denote the payment of bond i in tj periods.

� From the no-arbitrage relation linking coupon and zero-coupon bond prices we

have:

CBi(t, t+ hi) =
m∑
j=1

Ci,jB(t, t+ tj) ,

where CBi(t, t+ hi) = observed market price ,

and B(t, t+ tj) = unknown discount factors .
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� Since not all ZCBs B(t, t+ tj) involved in the relation are traded in the market,

we will allow for a deviation ε(i)
t so that:

CBi(t, t+ hi) =
m∑
j=1

Ci,jB(t, t+ tj) + ε(i)
t .

� We assume that ε(i)
t ∼ IIN(0, σ2) for all i, and that ε(i)

t ⊥ε
(j)
t+k for all i 6= j and

k ∈ R.

� We write, for any i ∈ {1, . . . ,M}, the following regression:

CBi(t, t+ hi) =
m∑
j=1

Ci,j

{
(1 + β0tj + γ0t

2
j + δ0t

3
j ) +

k−1∑
`=1

δl(tj − h`)3I`(tj)

}
+ ε(i)

t .
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� Given the observed prices and payment schemes of the M bonds, the k + 2 pa-

rameters θ = (β0, γ0, δ0, δ1, . . . , δk−1)′ can be estimated by Ordinary Least Squares

(OLS).

� The estimated market discount function is therefore given by:

B(t, t+ h) = (1 + β̂0h+ γ̂0h2 + δ̂0h3) +
k−1∑
j=1

δ̂j(h− hj)3Ij(h) ,

where θ̂ = (β̂0, γ̂0, δ̂0, . . . , δ̂k−1)′ denotes the OLS estimates .

� How the number of subintervals k and the knot points hj are chosen ?
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� Following McCulloch (1971, 1975), let us assume that k be the nearest integer

to
√
M and the knot points be defined by:

hj = Tτj + ωj(Tτj+1 − Tτj) , where τj =
⌊
j × M

k

⌋
, ωj = j × M

k
− τj ,

and in particular hk = TM .

� Alternatively, the knot points can be placed at (for instance) 1 year, 5 years and

10 years to maturity, so that the intervals broadly fit the short-term, intermediate-

term and long-term segments of the bond market.
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2.2.3.2 Cubic B-splines

� In the previous section we have seen that the cubic spline is represented by a col-

lection of nodes hj ∈ {h1, . . . , hk}, and by interval specific coefficients β0, γ0, δ0, δ1,

. . . , δk−1. The space of cubic splines with nodes on a prescribed grid comprise a

finite vector space.

� A much-more-widely used form of splines, forming a basis for cubic splines, are

the cubic B-spline. This methodology require the additional specification of three

knots below h0 and three knots above hk, giving us :

h−3 < h−2 < h−1 < h0 < h1 < . . . < hk < hk+1 < hk+2 < hk+3 .
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� The k + 3 cubic B-splines are:

ψj(h) =
j+4∑
a=j

 j+4∏
b=j,b6=a

1

hb − ha

 (h− ha)3Ia(h) , j ∈ {−3, . . . , k − 1} .

� The B-spline ψj(h) ≥ 0 in the interval [hj, hj+4] and zero outside.

� Using the above specified B-splines, we can write the ZCB price as:

B(t, t+ h) = z1ψ1(h) + . . .+ zsψs(h) ,

s = k + 3 ,

� and assuming m ZCB prices B(t, t+ hi) with i ∈ {1, . . . ,m}:

b(z) =

 B(t, t+ h1)
...

B(t, t+ hm)

 =

 ψ1(h1) . . . ψs(h1)
... . . . ...

ψ1(hm) . . . ψs(hm)

 z1
...
zs

 =: Ψz ,
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� we can write the following linear optimization problem in terms of observed

coupon bond prices:

minz∈Rs ||P−C×Ψz||2

� If the (M × s) matrix A = C×Ψ has full rank, the unique unconstrained solution

is:

z∗ = (A’A)−1A′P .

� Nevertheless, we have the constraint:

B(t, t) = z1ψ1(0) + . . .+ zsψs(0) = 1 .
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� Example [see Chapter 3 in Filipovic (2009)] : Let us take market prices for UK

gilts, 04/09/96

Coupon(%) Next coupon Maturity date Dirty price

Bond 1 10.00 15/11/96 15/11/96 103.82
Bond 2 9.75 19/01/97 19/01/98 106.04
Bond 3 12.25 26/09/96 26/03/99 118.44
Bond 4 9.00 03/03/97 03/03/00 106.28
Bond 5 7.00 06/11/96 06/11/01 101.15
Bond 6 9.75 27/02/97 27/08/02 111.06
Bond 7 8.50 07/12/96 07/12/05 106.24
Bond 8 7.75 08/03/97 08/09/06 98.49
Bond 9 9.00 13/10/96 13/10/08 110.87
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� The actual date t is the 04/09/96. The coupon payments are semiannual. The

day-count convention is actual/365.

� In terms of our notation : we have M = 9 bonds, and the payment dates are

T1 = 26/09/96, T2 = 13/10/96, T3 = 06/11/97, . . .

� Bond 1 has 1 payment date, Bond 2 has 3 payment dates, Bond 3 has 6 payment

dates . . .. In particular, we have:

m = 1 + 3 + 6 + 7 + 11 + 12 + 19 + 20 + 25 = 104 .

� The cash flow matrix C = (C)ij is (9× 104).
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� Let us assume to select the following knot points:

{−20,−5,−2,0,1,6,8,11,15,20,25,30}

thus, h−3 = −20, h−2 = −5, . . ., h0 = 0, . . ., h8 = 30, and therefore we are going

to use s = k + 3 = 8 B-splines for the estimation.

� The estimation with the 8 B-splines leads to:

minz∈R8 ||P−C×Ψz||2 = ||P−C×Ψz∗||2 = 0.23
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� Now, if we use only 5 B-splines with the 9 knot points:

{−10,−5,−2,0,4,15,20,25,30}

� the estimation leads to:

minz∈R5 ||P−C×Ψz||2 = ||P−C×Ψz∗||2 = 0.39

� There is a trade-off between the regularity (degree smoothness) of the estimated

curve and its ability to fit the data.
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Limits :

� The discount function estimated via cubic splines usually has a realistic shape

(over the maturities and over time) for maturities less that the longest one used

in the data set.

� Even if there is nothing in the approach explicitly imposing to the discount

function to be positive and decreasing as far as the residual maturity increases,

this will almost always be the case.

� Nevertheless, as h→ +∞, the cubic spline B(t, t+ h)→∞.
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� Estimating the discount function B(t, t+h) leads to unstable and irregular yield

and forward curves.

� The problems are typically observed over short and long maturities of the curve.

� In particular : i) the zero-coupon rates R(t, t+ h) will often increase or decrease

significantly for maturities h→ TM ; ii) the derived forward rate curve will typically

be quite non-smooth near the knot points, and the curve shape tends to be quite

sensitive to the observed bond prices and the location of the knot points.
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� From the previous example, and the above mentioned limits of the cubic spline

and cubic B-spline methodology to extract the discount function (and, thus, the

yield and forward rate curve), we observe that we need methodologies

a) able to extract smooth yield and forward curves for any maturity

b) that do not fluctuate “too much” (unrealistically)

c) and realistically flatten toward the long end.

→ it seems advisable to directly estimate the yield or forward curve is such a way

to satisfy a), b) and c).

⇒ Exponential-Polynomial Families.
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2.2.4 Exponential-Polynomial Families (see Cairns (2004) and Filipovic (2009))

� The purpose of this section is to introduce the parametric curve families which

are used by most central banks to construct the term structure of interest rates.

� The main feature is to capture (to fit) as much as possible the structure of

market interest rates with a small number of parameters.

� These parametric families are typically defined for the instantaneous forward rate

f(t, τ).
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� The instantaneous forward rate is defined as:

f(t, τ) = limT→τ R(t, τ, T ) ,

and the function τ 7→ f(t, τ) is called the term structure of instantaneous

forward rates or the instantaneous forward rate curve.

� From:

f(t, τ) = −
∂ lnB(t, τ)

∂τ
= −

∂B(t, τ)/∂τ

B(t, τ)
,

→ we get:

B(t, τ) = exp
[
−
∫ τ
t
f(t, u)du

]
⇒ R(t, τ) =

1

τ − t

∫ τ

t

f(t, u)du .
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2.2.4.1 The Exponential-Polynomial class for forward rates

� This class of forward-rate curves [see Björk and Christensen (1999)] is defined

as a combination of polynomials and exponentials with different rates of decay.

� This class of curves is defined as follows:

G(x) = p0(x) +
K∑
i=1

pi(x) exp[−αix] ,

with αi ∈ R+ ∀i ∈ {0, . . . ,K} .

and where pi(x) is any polynomial with deg(pi) ≤ ni ∀i ∈ {0, . . . ,K}.
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� Writing the polynomial pi(x) as:

pi(x) =
ni∑
j=0

zi,jx
j , ∀i ∈ {0, . . . ,K}

we observe that pi(x) is determined by its (ni + 1)-dimensional vector of coeffi-

cients zi = (zi,0, . . . , zi,ni)
′.

� The entire exponential family is therefore specified by the mapping G(x) =

G(z, α, x) with α = (α1, . . . , αK)′ ∈ RK
+ and z = (z1, . . . , zK).

� Let us now identify, for any date t, the class of instantaneous forward rate curves

τ 7→ f(t, τ) with the class of curves G(τ − t) introduced above.
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� For ease of notation, let τ = t+ h with h > 0. Then we have:

f(t, t+ h) = p0,t(h) +
K∑
i=1

pi,t(h) exp[−αi,th] ,

where pi,t(h) =
ni∑
j=0

zi,j,th
j .

� Well known special classes are: Nelson and Siegel (1987)

f(t, t+ h) = z0,0,t + [z1,0,t + z1,1,th] exp[−α1,th] .

� Svensson (1994)

f(t, t+ h) = z0,0,t + [z1,0,t + z1,1,th] exp[−α1,th] + z2,1,th exp[−α2,th] .
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� Wiseman (1994)

f(t, t+ h) = z0,0,t +
k∑
i=1

zi,0,t exp[−αi,th] .

� Cairns (1998), the restricted exponential model

f(t, t+ h) = z0,0,t +
k∑
i=1

zi,0,t exp[−αih] .

� In these models, the “dependence on t” of parameters zi,j,t and αi,t simply indi-

cates that they are re-estimated at each date t (using date t bond market prices)

in order to build the date t forward curve.
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2.2.4.2 The Nelson and Siegel (1987) family

� We have seen that Nelson and Siegel (1987) specify the forward rate curve in

the following way:

f(t, t+ h) = z0,0,t + [z1,0,t + z1,1,th] exp[−α1,th] .

� Let us now take their original parametrization:

f(t, t+ h) = β0 + β1 e(−h / θ) + β2
h

θ
e(−h / θ) , θ > 0 .

where (β0, β1, β2, θ)′ are parameters (applying to all residual maturities h) to be

estimated at each date t.
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� Interpretation of the parameters:

θ = scale (or location) parameter , β0 = level parameter ,

β1 = slope parameter , β2 = curvature parameter ,

i) The role of B0(h) = β0 (β0 6= 0) : mostly determine long-term forward rates

indeed, if h→ +∞ (and θ > 0) then f(t, t+ h)→ f(t, t+∞) = β0 ,

which is a long-term forward rate

ii.1) The role of B1(h) = β1 e(−h / θ) (β1 6= 0) :

if h→ 0 then f(t, t+ h)→ r(t) = β0 + β1 =the risk-free rate

⇒ r(t)− f(t, t+∞) = β1 ,⇒ it drives the spread between

the spot rate and the long-term forward rate .

ii.2) The term B1(h) = β1 e(−h / θ) mostly affects short-term forward rates :

B1(h)|h=0 = β1 , and limh→+∞B1(h) = 0 .
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iii.1) The role of B2(h) = β2
h

θ
e(−h / θ) (β2 6= 0) :

B2(h)|h=0 = 0 , and limh→+∞B2(h) = 0 ;

dB2(h)

dh
=

1

θ
e−h/θ

[
β2

(
1−

h

θ

)]
∀h > 0 ;

dB2(h)

dh
= 0 ⇔ h = θ ,

dB2(h)

dh
> 0 iff β2 > 0 and h < θ ; or β2 < 0 and h > θ .

iii.2) The term B2(h) mostly affects, compared to B1(h), the medium-term forward

rates.

iv) The first role of θ : it is indicated as a scale parameter, given that it measures

the rate at which short-term and medium term components decay to zero.
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v.1) The second role of θ : for fixed (β1, β2), it determines the location of the

(admitted) “hump” in the in the forward rate curve (if it exists). Indeed:

df(t, t+ h)

dh
=

1

θ
e−h/θ

[
β2

(
1−

h

θ

)
− β1

]
;
df(t, t+ h)

dh
= 0 ⇔ h = θ

β2 − β1

β2
;

v.2) There exists h∗ > 0 such that
df(t, t+ h∗)

dh
= 0 if and only if:

β2 > 0 and β2 > β1 ; or β2 < 0 and β2 < β1 ;

v.3) For given (β1, β2) such that exists h∗ making
df(t, t+ h∗)

dh
= 0, this residual ma-

turity h∗ increases as far as θ increases. This is the reason why we also indicate

θ as a location parameter for the “hump” (if it exists). If we assume θ = h

(B2(h)′ = 0), we have d
dh
f(t, t+ h) = 0 iff β1 = 0 (that is, r(t) = f(t, t+∞)).
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� From the above interpretation, we observe that the term structure is determined

by THREE FACTORS :

B0(h) = β0 can be seen as a Level Factor ,

B1(h) = β1 e(−h / θ) as a Slope Factor ,

B2(h) = β2
h

θ
e(−h / θ) as a Curvature Factor , .

� The Nelson and Siegel (1987) yield curve R(t, t+ h) is given by:

R(t, t+ h) =
1

h

∫ h

0
f(t, t+ u)du ,

= β0 + (β1 + β2)
1− e(−h / θ)

h / θ
− β2 e

(−h / θ) ,

= a+ b
1− e(−h / θ)

h / θ
+ c e(−h / θ) .
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� We can also write:

R(t, t+ h) = β0 + β1
1− e(−h / θ)

h / θ
+ β2

1−
(
1 + h

θ

)
e(−h / θ)

h / θ

� The discount function B(t, t+ h) is:

B(t, t+ h) = exp
[
−a h− b θ(1− e(−h / θ))− c h e(−h / θ)

]
.

� We write, for any i ∈ {1, . . . ,M}, the following regression:

CBi(t, t+ hi) =
m∑
j=1

Ci,j

{
exp

[
−a hi − b θ(1− e(−hi / θ))− c hi e(−hi / θ)

]}
+ ε(i)

t .

→ and parameters are estimated by non-linear regression techniques

[see Gallant (1987)].
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2.2.4.3 The Svensson (1994) family

� Svensson (1994) generalizes the Nelson-Siegel curve adding a third term. Pre-

cisely, he assumes:

f(t, t+ h) = β0 + β1 e(−h / θ1) + β2
h

θ1
e(−h / θ1) + β3

h

θ2
e(−h / θ2) .

� As for Nelson and Siegel (1987), we have:

f(t, t) = r(t) = β0 + β1 , f(t, t+∞) = β0

� but, the presence of B3(h) = β3
h

θ2
e(−h / θ2) allows for two “humps” in the forward

curve thanks to θ1 and θ2.
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� This is important, given that we frequently observe two humps:

the first at short maturities associated to monetary policy expectations ,

the second one at long maturities to catch convexity effects .

� The new parameters β3 and θ2 provide additional flexibility, compared with the

Nelson-Siegel curve, and in particular over short and medium maturities.

� The Svensson (1994) yield curve R(t, t+ h) is given by:

R(t, t+ h) = β0 + β1
1− e(−h / θ1)

h / θ1
+ β2

1−
(

1 + h
θ1

)
e(−h / θ1)

h / θ1

+β3

1−
(

1 + h
θ2

)
e(−h / θ2)

h / θ2
.
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2.2.4.4 The Gurkaynak, Sack and Wright (2007) data base on nominal yields

� Among the several U.S. yield curve data bases characterizing the empirical studies

in the fixed income literature [Fama and Bliss (1987), McCulloch and Kwon

(1993)], recently Gurkaynak, Sack and Wright (2007) have proposed daily U.S.

yield curve estimates.

� The sample period is from 1961 to the present : it is updated regularly and is

available (for free!) at

http://www.federalreserve.gov/Pubs/feds/2006/200628/200628abs.html

http://www.federalreserve.gov/econresdata/researchdata.htm
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� The methodology they use to estimate (daily!) the forward curve f(t, t + h)

is using the Svensson (1994) family, that is a generalization of the Nelson and

Siegel (1987) family.

� The estimation is based on observations of only T-notes and T-bonds prices

(maturities, at the issuing date, ranging from 2 years to 30 years).
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� At any date t in the sample, they thus exclude:

– all T-bills : their market is disconnected (segmented) from that of T-notes

and T-bonds.

– all T-notes and T-bonds with residual maturity less than 3 months : they

are highly affected by lack of liquidity of short-term investors.

– the two most recently issued T-notes and T-bonds: they are called “on-

the-run” and “first off-the-run”. They are excluded because of their greater

liquidity.
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� This paper tells us (among others) that we have to select a “coherent/homogeneous”

set of bond prices in order to build a reliable term structure of interest rates.

The bonds have to:

– denominated in the same currency;

– of the same credit quality (default-free in our case!)

– reflect the same level of liquidity

– not be affected by option like features (callable bonds)

� Ideally, the bonds should ideally differ in terms of their maturity and coupons.
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� The Nelson-Siegel-Svensson methodology is widely used in practice (central

banks, in particular)

� The main feature is that they are parsimonious:

– small number of parameters (compared to splines);

– the curves we fit (forward curve) and then we derive (spot curve) are smooth

over all maturities and over time.

� Obviously the main limit is the lack of flexibility: these methods cannot repli-

cate all the shapes we cross in reality.
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2.2.4.5 The Gurkaynak, Sack and Wright (2010) TIPS yield curve data base

� They estimate the Nelson-Siegel-Svensson yield curve on TIPS from the start of

1999 to the present.

� It is updated regularly and is available (again for free!) at

http://www.federalreserve.gov/econresdata/researchdata.htm

� As mentioned in Lecture 1, comparison (difference) with the corresponding nom-

inal yield curve allows measures of inflation compensation (or break-even inflation

rates) to be computed.
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2.2.5 The Principal Component Analysis of the Yield Curve

� When we have presented the Nelson and Siegel (1987) forward rate curve, we

have seen that is was possible to identify THREE FACTORS determining the

possible shapes:

B0(h) = β0 can be seen as a Level Factor ,

B1(h) = β1 e(−h / θ) as a Slope Factor ,

B2(h) = β2
h

θ
e(−h / θ) as a Curvature Factor , .

� Are these THREE DRIVING FORCES of the term structure of interest rates

model dependent or model independent ?
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� In other words :

– are these three factors simply arbitrarily assumed, from the beginning, by the

model [the Nelson and Siegel (1987) model in our case]

– or are they really present in (suggested by) the interest rates data ?

� The answer to that question is extremely important, given that it leads to un-

derstand how many factors a term structure model should incorporate in order

to be close to the observations (i.e. well specified).

� The well known methodology followed by the term structure literature is the

Principal Component Analysis (PCA).
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2.2.5.1 Principal Component Analysis

� The Principal Component Analysis (PCA) is a well known dimension reduction

technique in multivariate analysis.

� It is used to extract the factors explaining most of the variability of the multivari-

ate phenomenon we observe : a p-dimensional random process Xt = (X1,t, . . . , Xp,t)′

observed over time.

� PCA produces a lower dimensional description of (Xt)t=1,2,... searching for linear

combinations of Xt with the largest variances [see Härdle and Simar (2003) :

Applied Multivariate Statistical Analysis, Springer].
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� The key mathematical principles behind the PCA are the Spectral Decompo-

sition theorems of linear algebra.

The Jordan Decomposition Theorem (JD) : Each symmetric (p× p) matrix

A can be written as:

A = ΓΛΓ′ =
p∑

j=1

λjγjγ
′
j , where Λ = diag(λ1, . . . , λp) contains the

p eigenvalues of the matrix A, and where Γ = (γ1, . . . , γp)

is an orthogonal matrix (Γ−1 = Γ′, i.e. γ′iγj = 0 ∀i 6= j

with ||γj|| = 1) where the jth column is the jth eigenvector γj of A

Useful application : if A = ΓΛΓ′ then, for any α ∈ R, we have Aα = ΓΛαΓ′ where

Λα = diag(λα1, . . . , λ
α
p).
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Singular Value Decomposition Theorem (SVD) : Each (n × p) matrix A,

with rank(A) = r, can be decomposed as:

A = ΓΛ∆′ , where Γ is (n× r) and ∆ is (p× r).

Both Γ and ∆ are column orthonormal, i.e. Γ′Γ = ∆′∆ = Ir .

Λ = diag(λ1/2
1 , . . . , λ

1/2
r ) , λj > 0. The values λ1, . . . , λr are the

non-zero eigenvalues of the matrices AA′ and A′A.

Γ and ∆ consist of the corresponding r eigenvectors of these matrices.
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• Principal Components of a Random Vector : let us consider a Rp-valued

square-integrable random vector X = (x1, . . . , xp)′ with mean vector µ = E[X]

and variance-covariance matrix Σ = V[X].

� Since Σ is symmetric and positive semi-definite, then from JD we have that

Σ = ΓΛΓ′ with λi ≥ 0 ∀i ∈ {1, . . . , p}.

� The principal components transform of X is defined as:

Y = Γ′(X − µ) , which can be seen as a re-centering and rotation of X ;

and each Yi = γ′i(X − µ) is the projection of X − µ onto

the ith eigenvector γi of Γ. Yi = ith principal component of X.

γi is also called the ith vector of loadings of X.
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� We thus obtain the decomposition X = µ+ ΓY = µ+
p∑

j=1

γjYj, and we have that

E[Y ] = 0 and V[Y ] = Γ′ΣΓ = Γ′(ΓΛΓ′)Γ = Λ.

� This means that the principal components of X are uncorrelated and have vari-

ances V[Yj] = λj ∀j, which can be ordered from the largest to the smallest:

V[Y1] = λ1 ≥ . . . ≥ V[Yp] = λp ≥ 0.

� It can be shown (exercise!) that the 1st principal component, Y1, has maximal

variance among all standardized linear combinations of X. That is:

V[γ′1X] = max{δ:||δ||=1} {V[δ′X]}
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� For j ∈ {2, . . . , p}, the jth principal component Yj can be shown to have maximal

variance among all such linear combinations that are orthogonal to the first (j−1)

linear combinations.

� We also have that:

p∑
j=1

V[Xj] = trace(Σ) =
p∑

j=1

λj =
p∑

j=1

V[Yj]

� The quantity:

∑k
j=1 λj/

∑p
j=1 λj

represents the amount of variability in X explained by the first k principal com-

ponents Y1, . . . , Yk.
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• Sample Principal Components : Now let assume to observe our p-dimensional

vector over time. Let us therefore denote with xt = (x1,t, . . . , xp,t)′ the date t

observation (realization) of the random vector Xt = (X1,t, . . . , Xp,t)′, and let us

assume to have T observations.

� We organize the T observations of each component xi,t in the following (T ×

p) matrix: X = [x′1, . . . , x
′
T ] where each rows x′j = (x1,j, . . . , xp,j)′ is a sample

realization (observation) of the random vector Xt at date t = j.

� Let us assume that Xt is independently and identically distributed (i.i.d.) with

E[Xt] = µ and V[Xt] = Σ ∀t.
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� We consider the empirical (T × T ) covariance matrix:

Σ̂ij = Ĉov[Xi,t, Xj,t] = 1
T

∑T
t=1(xi,t − µ̂i)(xj,t − µ̂j)

where µ̂ = (µ̂1, . . . , µ̂p)′ =
1
T

∑T
t=1 xt denotes the empirical mean.

� Given that Σ̂ is positive semi-definite, the above PCA applies :

Σ̂ = Γ̂Λ̂Γ̂′ =
p∑

j=1

λ̂jγ̂jγ̂
′
j , where Λ̂ = diag(λ̂1, . . . , λ̂p) and where

Γ̂ = (γ̂1, . . . , γ̂p) is an orthogonal matrix (Γ̂−1 = Γ̂′, i.e. γ̂′iγ̂j = 0 ∀i 6= j)

with jth column the jth eigenvector γ̂j of Σ̂.
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� The first empirical principal component is the T -dimensional vector y1 given by:

y1 = (X− 1T µ̂′)γ̂1 .

� We thus can write the p empirical principal components in the following compact

form:

Y = (X− 1T µ̂′)Γ̂ , where Y = (y1, . . . ,yp) is a (T × p) matrix .

Cov[yi, yj] = 1
T

∑T
t=1 yi,tyj,t = λ̂i iif i = j , (= 0 otherwise) .

� Remember that the PCA is sensitive to scale changes: if we multiply one variable

by a scalar we obtain different eigenvalues and eigenvectors. Thus the PCA

should be applied to data having the same scale in each variable. Otherwise, we

have to use the Normalized Principal Component Analysis (NPCA).
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2.2.5.2 PCA of the yield curve

� Now, let us assume that our (T × p) data matrix X = [x′1, . . . , x
′
T ] contains at

each row x′t = (x1,t, . . . , xp,t)′ the sample realization (observation) of the following

random vector containing, at date t, the increments of spot rate curve that is:

xi,t = R(t, t+ τi)

with τi ∈ {τ1, . . . , τp} set of maturities .

� The first difference is also (frequently) taken (as a standard practice) given that

interest rates are not i.i.d.. They are highly serial dependent, i.e. Cov[R(t, t +

τi), R(t+k, t+ τi)] >> 0 for k 6= 0 (and quite close to one!). Nevertheless, results

do not change a lot.
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� Now, let us apply the PCA to the US yields, observed quarterly from 1964:Q1

to 2009:Q4 [from the Gurkaynak, Sack and Write data base], with maturities 3

months, 6 months, 9 months, 1 year, 5 years and 10 years. We find:

PC Explained Variance (%) Cumulative Variance (%) Eigenvalue

1 0.9592 0.9592 5.7554
2 0.0376 0.9968 0.2255
3 0.0025 0.9993 0.0148
4 0.0006 0.9999 0.0038
5 0.0001 1.0000 0.0005
6 0.0000 1.0000 5.02E-06
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� The first 3 eigenvector associated to the first 3 PC are:

R(t, t+ τi) γ̂1 γ̂2 γ̂3

3m 0.4067 -0.4178 0.7569
6m 0.4124 -0.3011 -0.1058
9m 0.4141 -0.2207 -0.3442
1y 0.4151 -0.1505 -0.4350
5y 0.4074 0.4341 -0.1419

10y 0.3934 0.6892 0.2968

� The last two tables suggest that we can approximate the time variability of

Rt = [R(t, t+ 3m), . . . , R(t, t+ 10y)]′ in the following way:

Rt = µ̂+ γ̂1y1,t + γ̂2y2,t + γ̂3y3,t

� Same conclusions are obtained for yield variations (∆Rt) [see Piazzesi (2003)].

� If we plot these 3 eigenvectors and the time series of the three PCs we find :
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� This means that, for fixed y2,t and y3,t, if we assume a variation of y1,t (the

first PC), then the effect is transferred on the yield curve by γ̂1 which is almost

constant over maturities. Thus, the entire yield curve has a parallel shift. For

this reason the first PC is interpreted as a LEVEL FACTOR.

� Following the same reasoning, the second and third PC are interpreted as SLOPE

and CURVATURE FACTORS, respectively [see Litterman and Scheinkman (1991)].

� We find the same interpretations as in Nelson and Siegel (1987).
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2.2.5.3 PCA, Factors and yield curve information

� PCA is adapted to Gaussian i.i.d. (independent identically distributed) processes

and, anyway, the role of factors is judged on the basis of the explained variance

and not in terms of the contribution to fit the observations.

� Well known empirical studies have highlighted that at least two or three factors

(maybe four or five) are required by a yield curve model to match the dynamics

and the shapes of the term structure, and this is regardless the sample period

and the kind of used data [see Dai and Singleton (2000, 2002, 2003), Duffee

(2002), Cheridito, Filipovic and Kimmel (2002), Duarte (2004)].
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� Now, let us take a look to skewness, kurtosis and ACF (k) of the data base used

in the PCA.

� Remember:

i) for a Gaussian random variable skewness = 0, kurtosis = 3,

ii) the Autocorrelation at lag k > 0, denoted ACF (k), for the data-t yield R(t, h)

(with residual maturity h) is given by ACF (k) = Corr(R(t + k, h), R(t, h)) (for

k = 0, ACF (0) = 1);

iii) if a process is i.i.d, then ACF (k) = 0 for any k > 0.
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Yields 1-Q 2-Q 3-Q 4-Q 20-Q 40-Q

Mean 0.015 0.015 0.015 0.015 0.017 0.018
Std. Dev. 0.007 0.007 0.007 0.007 0.007 0.006
Skewness 0.84 0.74 0.69 0.67 0.77 0.94
Kurtosis 4.41 4.08 3.95 3.90 3.58 3.60

ACF(1) 0.91 0.92 0.93 0.93 0.95 0.96
ACF(4) 0.74 0.76 0.77 0.77 0.83 0.85
ACF(8) 0.48 0.52 0.54 0.55 0.68 0.73
ACF(12) 0.35 0.38 0.41 0.43 0.60 0.64
ACF(16) 0.31 0.34 0.36 0.37 0.50 0.53
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� So, yields are not really i.i.d. and Gaussian-distributed.

� This result is the same regardless the sample period, the number of residual

maturities and the methodology followed to construct the database.

� Observe that, in the case of yields, ACF is decreasing in k (for any fixed h) and

increasing in h (for any fixed k).
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� Cochrane and Piazzesi (2005, AER) show that a particular combination of for-

ward rates successfully forecasts excess bond returns.

� This linear combination of forward rates is not completely linked to the first

three Principal Components (LEVEL, SLOPE and CURVATURE).

� Thus, it seems that there is information useful to predict yield variations (i.e.,

bond returns), over and above the one contained in the three PCs.
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