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2.1.

1 Introduction

Interest rates change substantially over time, and their variation poses large
risks to financial institutions, portfolio managers, corporations, government and

households.

This chapter discusses the basics of interest rate risk management.

In particular, we discuss how to measure risk for fixed income instruments, by

introducing the notion of duration and convexity.



From Veronesi (2010, Chapter 3)

Figure 3.1 Zero Coupon Bond Yields and the Level of Interest Rates: 1965 -
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[0 Example: The Savings and Loan Debacle in the 1980s is a standard example

of what can go wrong when interest rates shift.

[0 A Savings and Loan (S&L, say) is a kind of bank that earns a large part of
its revenues from the difference between the long-term mortgages it provides to

home owners and the short-term deposit rate it offers to depositors.

0 When interest rates increased at the end of the 1970s, S& L were receiving their
fixed coupons from mortgages contracted in the past, when rates were low, BUT

suddenly they had to pay interest on deposits at the new higher deposit rates.



[1J Because depositors could choose were to put their money, banks were forced to
offer high deposit rates, otherwise depositors would withdraw their deposits and

invest in other securities, such as Treasuries.

0 A withdraw of funds is the worst nightmare for a bank, as depositor's money is

not in the bank any longer: it has been loaned to others (to firms).

[0 The spread between the rate earned on assets and the (higher) rate paid on

liabilities quickly put many S&L out of business.



0 The example above calls for:

(a) a systematic methodology to assess the riskiness of a bond portfolio to move-

ments in interest rates;

(b) and a methodology to effectively manage such risk.

[J Let us tackle the former problem thanks to the concept of Duration.



2.1.2 Duration

0 Definition: The Duration of a coupon bond (a security) with price CB is the
(negative of the) percent sensitivity of the price CB to a small parallel shift in
the level of interest rates. That is, let Y(t,T) be the term structure of interest

rates at time t.

— Consider a uniform shift of size dY across rates that brings the yield curve

to Y*(t,T) = Y(t,T) + dY thus inducing CB* = CB + dCB.

— The duration (approximately) measures the magnitude of dCB induced by

dY .
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It is @ measure of the sensitivity of the coupon bond price to a change (a shift!)

in interest rates.

We use the yield to maturity Y¢B(¢t,T) = Y of the bond as a proxy of the whole
term structure of interest rates. Indeed, this YTM can be seen as an average of

the spot rates discounting the risk-less cash flows.

If the term structure of interest rates is flat, then the YTM is the term structure.

How the duration of a coupon bond is calculated ? There are two main defini-

tions: the Macaulay Duration and the Modified Duration.
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[0 The coupon bond price (assuming annual payments) at date t = O is given by:

T
CB(O,T) =) (C)x (1+Y)™,

=1

and it is a non-linear function of Y.

[0 Differentiating CB(0,T) with respect to Y gives:

dCB(0,T) 1
dy - 14vY

T
Y ExC)x(14+Y)".
1=1

[0 We multiply both sides of the equation by dY/CB(0,T) to get:

T
i x C; 14+Y)™"
dCB(0,T) 1 ;( X G )

= — X

CB(0,T) 14+Y T |
D (@) x (A +Y)™
=1

dY .
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(1 We define the Duration D as:

T
dExC)yx(1+Y)" |
i=1 . Cix(1+Y)™
D = = 7 X y
T | — CB(0,T)
SE)xa+v)yt =
=1
0 We can now write dCB(0,T)/CB(0,T) as:
dcBO,T) _ D ., _ ,__dcBOT) (1+Y)
CB(0,T) 14+Y CB(0,T) dY

0 D is called the Macaulay duration, and it is the weighted average of coupon
dates (expressed in years) until the maturity of the bond, with the weights being

the present values of the cash flows divided by the bond price.
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[J It acts as a measure of first-order sensitivity of the bond price with respect to

changes in the YTM (or parallel shift of the flat term structure).
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[0 Thus, Duration can be used to approximate/predict bond price changes, given

a (very smalll) change in the YTM.

[J Let us consider at date ¢t = 0 a coupon bond with a constant coupon rate c,
a face value of Cp and time to maturity T'. Let us denote with CB(0,T) the
bond price, CB¢(0,T) the present value of coupon payments, and CB¢r(0,T) the

present value of the principal payment. Then:

CB(0,T) = CB¢(0,T) + CBC¢(0,T),

1-(1+Y)T
Y Y

T
with CB*(0,T) =) (cx Cr) x (14+Y)™ = (cx Cr)
=1

and CB“ (0, 7)) =Cr(14+Y) T,

17



1 From previous relationships we can write:

_ (@+Y)dcB(O,T) _ (1+Y) y (dC’BC(O,T) n dCBCT(O,T))
~  CB(0,T) dY CB(0,T) dY dY ’
] and
dCB¢(0,T) —CB“0,T) , (Tc)CB“(0,T)
dY o Y Y(14+Y)
dCB“(0,T)  -C/T _ —CB“(0,T)T
dY 14+ YT+ 1+Y '

J We thus obtain the following closed-form formula for D:

__CB(0,T) 1 CB%(0,T) c
D= CB(0,T) (1 + ?) T CB(0,T) (1 )T‘
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Special cases of this formula include:

a) Zero-coupon bonds : ¢ =0 and thus CB¢(0,T) =0 and CB“"(0,T) = CB(0,T)
with Cr = 1. This means that D = T: the duration of a ZCB is equal to its

residual maturity.

b) Perpetuities : there is no final repayment (CB¢(0,T7) = 0 and CB(0,T) =

CB¢(0,T)) in this case; we thus obtain D= (1+Y)/Y.

c) Par bonds : by definition, a par bond is a coupon bond such that ¢ =Y and

thus CB(0,T) = Cr. Then:

D=(1-(1+Y)T)x (1+%>.
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0 Another well known measure of duration, the Modified Duration, is given by:

D, od = , SO that
14+Y
dC'B(0O,T 1 dC'B(0,T
(O, ) — _Dmod xdY = Dmod = —— X ¢ (07 ) .
CB(0,T) dY CB(0,T)

e Example 1: A $100 million bond has modified duration equal 10, D,,,q = 10.

— This implies that one basis point increase in the level of interest rates dY = .01%
generates a swing in the bond value of:

0.01
100

dCB = —10 x $100million X = —%$100,000.

— That is, the investor stands to lose 100,000 for every basis point increase in the

(flat) term structure.
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e Example 2: An investor has $100 million invested in 5-year ZCBs, thus D,,,,q =

5 (years).

— This implies that one basis point increase in the level of interest rates dY = .01%
generates price reduction of:

0.01

= —$50,000.
100

dB = —5 x $100million X

— That is, the investor stands to lose 50,000 for every basis point increase in the

(flat) term structure.
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2.1.3 Properties of Coupon Bond Duration

[J For a given time to maturity and Y TM, the duration decreases as the coupon

rate increases:

— the higher the coupon rate, the larger are the cash flows in the near future
compared to long-term future. Cash flows that arrive sooner rather than

later are less sensitive to changes in interest rates.

— Thus an increase in ¢; implies lower sensitivity to changes in the discount rate

(14+Y)" (or B(t,T)).

22



[0 For a given time to maturity and coupon rate, duration decreases as the YTM

increases.

— a higher YTM implies that short-term cash flows have a relatively higher
weight in the value of the bond, and thus a lower sensitivity to changes in

Y TM.

0 For a given coupon rate and Y TM, the duration increases as the maturity in-

creases.
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2.1.4 Duration of a Portfolio

[J Consider a portfolio of M = 2 securities: the portfolio is made of Nj units of
security 1, and N> units of security 2. Let P; and P> be the prices of these two

securities. The value of the portfolio is then 'l = N; x P; + N> X P».

— The duration of these two assets is

1 dP;
Dodi = —— X , 1 1,2}.
— The duration of the portfolio is:
1 drll 1 d(N1 x P N> x P 1 dP dP
Dyt = —= x M _ L dNx P NoxFo) 1y dh dl
’ I dyY M dY M dY dyY
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The duration of the portfolio can thus be written :

D — 1N P x L dh 4 No X P5 X 1 df
mod,l1T — M 1 1 PldY 2 2 PQdY

= 71 Dpod1 + ™2 Diod,2

N; X P;
with m; = "I_I i€ {1,2}).

The duration of a portfolio of M securities is therefore:
M
Dmod,l_l — Zﬂ-i Dmod,i-
i=1

the duration of the portfolio is a weighted average of the durations of the bonds

in the portfolio, if all the bonds have the same YTM.
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[0 Example 3: A bond portfolio manager has $100 million invested in 5-year
ZCBs and $200 million invested in 10-year ZCBs. What is the impact of a one

basis point parallel shift of the term structure on the value of the portfolio?

[J We can answer this question by computing the duration of the portfolio: The
5-year and 10-year ZCBs have duration of 5 and 10, respectively. The total

portfolio value is $300 million.

100 200
— The duration of the portfolio is : Dy,pan = %5 + 300 10 = 8.3. Therefore, a

one basis point increase in interest rates generates a portfolio loss of:

$300million x 8.3 x 0.01% = $249, 000.
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2.1.5 Dollar Duration

[J The previous definitions of Durations implicitly assume that the today’s price of
the asset is strictly positive: CB > 0, Il > 0. However, in many cases the assets
or the portfolio we are interested in have a value exactly equal to zero. In that

case we resort to the Dollar Duration.

[0 Definition: The Dollar Duration D% of a security P and portfolio IN are

dP M
$ $ $
D} =-_. Di _ZEZI:NZ-Di

] Definition: The price value of a basis point, denoted PV01 or PVBP of a
security P is defined by PV01 = D%, x dY.
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The concept of Duration we have just presented is based on the following as-
sumptions: i) YTM or interest rates variations are infinitesimal, ii) the term

structure of interest rates is flat, and iii) shift in the term structure are parallel:

implicitly, there is only one particular risk factor: the one producing the in-

finitesimal parallel shift in the flat term structure.

Starting from the next slide we relax assumption ¢) and discuss the notion of

Convexity of a bond.

Then we show why assumptions #2)-7:¢) can (seem to) generate risk-less arbitrage.
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2.1.6 Convexity

[J Let us consider now a Taylor expansion of the coupon bond price considered as

function of the yield to maturity, namely CB(0,T) = CB(Y):

dCB(Y) 1d2CB(Y)
PN (Y - Y -
v |y =, ( 0) + 5 ay2

CB(Y) = CB(Yy) + ly=yv, (Y —Y0)2 4+ ...

where Yp and Y denotes the YTM before and after the variation.

[J Let us limit ourselves to the first two terms of the expansion to get:

dCB(Y) 1d?°CB(Y)
—  — " v_v AY _
gy =AY o

ACB(Y) = ly=v,(AY)?,

where ACB(Y) = CB(Y) — CB(Y,) and AY =Y — Y (not infinitesimal!).
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[0 If we divide the LHS and RHS of that relation by CB(Y) we obtain an expression

of the relative price change as a function of a (modified) duration term and a

convexity term:

ACB(Y) _ ’ ,
CB(Y) — DmodAY_l_ Q(AY) ’

dCB(Y) 1
dY CB(Y)’

where D,,,q = —

1 d?°CB(Y
and kK = ) is the convexity.
CB(Y) dY?

[0 For bond with fixed, risk-less cash flows, we can differentiate CB(0,T) = ZiT:l(CZ-)x
(1 4+ Y)~* twice with respect to Y to get:

d?CB(Y) = 2C, n 6C> n +T(T+1)CT
dy2  (1+Y)3  (1+4Y)* T Q+4Yy)TH2
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Convexity in this case is:

i(ix(l—l—z’)xC’i)
—  (14Y)t2 Gx (144 xC)
— =1 — 1

I 1+ V)+2
2 Gty

Duration is a linear approximation to the sensitivity of the bond price to changes

/CB(0,T)

in the YTM (parallel shift of the flat term structure). Convexity provides a

second-order approximation of that sensitivity.

Convexity, like duration, generally increases with maturity and decreases with the

coupon rate and the YTM.

T (T + 1)

The convexity of the ZCB is k = .
(1+Y)?
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[J In the case of continuously compounded YTM R, the convexity of the ZCB is

k= T2,

[J The convexity of the portfolio is:

d?N(y)/dy?

kn(Y) = oY)

M
= mmkm(Y)
m=1

where k,,(Y) denotes the convexity of the m-th bond in the portfolio.

— the convexity of the portfolio is a weighted average of the convexities of the

bonds in the portfolio (if all the bonds have the same YTM).
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0 Example 4: A corporation has $100 million (par) of a 10-year coupon bond that
pays a 5% semi-annual coupon. Assume that the term structure of the interest
rates is flat at Y = 4.5%. The price of the bond is CB = $103.58, implying
a position of $103.50 million, a (modified) duration of D = 8.03 and convexity

Kk = 73.87.

O If Y moves from 4.5% to 5.5%, the new price decline to $95.63 with an associated

exact loss of dCB/CB = —7.67%.

0 With a duration-base approximation, we have a loss of:

dC'B

——~ —D x0.01 =-0.0803~ —8%.
CB

34



— Adding a convexity term instead entails a more precise approximate loss of:

dCB 1
g © —D x 0.01 + 5K (0.01)? = —0.07662 ~ —7.66%.

dC'B

[J In other words, the Duration and Convexity measure of IS more precise than

the Duration only measure.
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2.1.7 Only one risk factor in the " Duration-Convexity setting”

[J The concepts of Duration and Convexity, presented in the previous slides, as-

sumed parallel shift of a flat term structure.

[J This means that in the Duration-Convexity setting there is only one “"FACTOR”
determining bond price variations over time and for any residual maturity. In
other words, there is only one source of risk. It is the YTM Y which is identified

with the flat yield curve.

J In reality, the yield curve is not flat: see the two following graphs.
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Yields (Monthly Basis)

Observed U.S. Monthly Yield Curves from 1964 to 1995.
"Simple Shapes" (source: CRSP).
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Yields (Monthly Basis)
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[0 It does not move in parallel fashion (distance is not the same).

CRSP).

Observed U.S. Monthly Yield Curves from 1964 to 1995 (source
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The yield curve is characterized by time variations in its average level, slope and

curvature.

The single factor Y can be identified with the average LEVEL of interest rates.

The time series of the Term Spread = R(¢,t+ 5y) — R(t,t 4+ 1m) can be seen as

a measure of the variation over time of the vield curve SLOPE.

The time series of the Butterfly Spread = —R(¢t,t+1m)+2 R(t,t+ 1y) — R(¢,t +
5y) can be seen as a measure of the variation over time of the yield curve

CURVATURE.

40



Observed monthly variation of U.S. yield curve LEVEL, SLOPE
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= We need for more FACTORS organized by sophisticated interest rate models

able to:

— account for (to explain!) a non-flat term structure

— moving over time and maturities in a realistic way (i.e. close to the data :

time varying level, slope and curvature)

— and compatible with the no-arbitrage principle (i.e. a set of “fair” prices).
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2.1.8 Is there really a Free Lunch in the Duration model ?

[0 Are the parallel shifts of the term structure (implicit in the Duration setting)

acceptable, in the sense that they do not allow for “free lunch” 7

] If such free lunch was possible, then these assumptions should be revised in
order to better explain the reality of bond markets : there are very few arbitrage

opportunities!
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[0 An arbitrage opportunity is a feasible trading strategy involving two or more

securities with either of the following characteristics :

a) it does not cost anything at initiation, and it generates a sure positive profit

by certain date in the future;

b) it generates a positive profit at initiation, and it has a sure non-negative payoff

by a certain date in the future.

0 The no-arbitrage condition requires that no arbitrage opportunities exist.

[0 see Veronesi (2010).
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[J The presumption of a free lunch in the “Duration setting” comes from the

following fact:

— two portfolios having the same value (=price) and the same duration will gen-

erally have different convexities.

— in a world where movement in flat term structure are parallel, a strategy where
one buy the high-convexity portfolio and sells the low-convexity one seems to be

an arbitrage opportunity.
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The Example:

[0 Let us consider at date ¢t = 0 a portfolio A of a 5-year zero-coupon bond (with
price B(0,5)), and a portfolio B invested in 1l-year and 10-year zero-coupon

bonds (with price B(0,1) and B(0,10), respectively).

[J The relative weights on 1-year and 10-year ZBCs are chosen such that portfolios
A and B have the same value and the same modified duration. Portfolio B is

called “barbell portfolio™.

[0 Let us denote by g1 and gi10 the number of 1-year and 10-year ZCBs in portfolio

B, and by D;,,q; the modified duration of an ¢-year ZCB.
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[J We have the following linear system:
B(0,5) = B(0,1)q1 + B(0,10)q10 (equal value constraint),
— B(Oa 5)Dmod,S — (B(Oa 1)Dmod,1)Q1 + (B(Oa 1O)Dmod,1O)Q1O

(duration-matching constraint).
[0 Let us assume that all bonds have a face value of 100 and interest rates are 5%

(flat term structure), then:

B(0,1) = 100(1.05)t =95.238, B(0,5) = 100(1.05)"° = 78.353,

B(0,10) = 100(1.05)719 = 61.391, Dpyo41 = 75z = 0.952 year,

Diods = 735 = 4.762 years, Dioq10 = %85 = 9.524 years.
[J The system simplify to:

78.353 = 95.238q1 + 61.391q10,
373.108 = 90.703¢; + 584.676q10 = ¢q1 = 0.457 and q10 = 0.576.

a7



0 Which of portfolio A or portfolio B is more convex? From the ZCB convexity
formula we obtain : k1 = 1.81, ks = 27.21 and k190 = 99.77. The convexity of

the portfolio B is therefore:

_ B(0,1)q1x1 + B(0,10)q10K10
KB = ~ 45
B(07 1)ql —I_ B(O7 1O)CI10

while the convexity of portfolio A is k4 = ks = 27.21 = kg > k4.

[0 The free lunch (in this simple setting) is obtained selling portfolio A (intermediate
maturity) and buying portfolio B (at date ¢t = 0). To illustrate this point, let us
imagine that the term structure has a upward shift (to 6%) or a downward shift

(to 4%) (like a binomial distribution).

48



[0 Starting from the rate Y = 5% we have M4(5%) = Ng(5%) = 78.353. We buy
portfolio B (with large convexity) and we sell A (smaller convexity) and thus we

have zero net profit at ¢t = 0.

O If, at t = 1, we move to the up scenario, Mg(6%) = 74.79 > N4 (6%) = 74.73,
and if we move to the down scenario we have Mg(4%) = 82.27 > M4(4%) =

82.19.

— At t = 1, portfolio B is always more valuable than portfolio A, and therefore I
earn the difference once I close the position. I have a positive return exploiting

the convexity.
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= Free Lunch !...apparently !

0 When we move from datet = 0 to datet = 1 (where we find up/down scenario),

we assume that the 3 ZCBs maintain the same residual maturity.

[0 We have proposed a ‘“very (very!) simple” example interested to highlight the
limit of the Duration model, as we have done with the level-slope-curvature

analysis of the observed U.S. vield curves.
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] In reality, the convexity trading strategy does not represent an arbitrage oppor-
tunity. Why ? Because, in this analysis we do not take into account the time

dimension that naturally affects bond prices over time.

[J For instance, a ZCB price can increases over time simply because times passes

(and it approaches the maturity date), even if interest rates do not move.

[0 What happens 72 The gain in value from higher convexity is compensated by
a lower gain due to the passage of time (in dynamic investment strategy this

relation is known as the Theta-Gamma relation).
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2.2.4 Exponential-Polynomial Families
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2.2.5 The Principal Component Analysis of the Yield Curve

2.2.5.1 Principal Component Analysis
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2.2.5.3 PCA, Factors and yield curve information
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2.2.1 Introduction

[0 We have seen during Lecture 1 how important is the Discount Function
B(t,T):

i) The associated (continuously compounded) ZCB Yield Curve R(t,T) = —" 2D
provides a clear picture of how date-t spot interest rates changes as a function

of the maturity date T'.
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1) From B(t,T) or R(t,T), we can determine the forward rate curve R(t,7,T) or

the par yield curve p(t,T):
— the first one provides a date-t information of future spot rates.

— the second one gives the date-t market interest for a bullet bond.

111) We have seen that a coupon bond can be interpreted as a portfolio of ZCBs :

C1 units of ZCBs maturing at Ti, C> units of ZCBs maturing at 1>, ... etc. :

CB(t,T) = Z 1<y CiB(L, Th).

=1
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0 In most markets only a few ZCBs are traded, so that information about the

discount function must be inferred from market prices of coupon bonds.

[0 The purpose of this lecture is to present methods to extract or estimate the

term structure of interest rates from prices of coupon bonds at a given date.

O In Section 2.2.2 I will present the so-called bootstrapping technique, based on

the construction of ZCB prices by means of certain portfolios of coupon bonds.

— this is possible only in bond markets with sufficiently many coupon bonds

with regular payment dates and maturities.

59



J In Sections 2.2.3 and 2.2.4 1 will present two alternative techniques based on

b)

the assumption that the discount function B(t,T) is specified as a function of

unknown parameters (and the time-to-maturity T'—t): B, T) = f(t,T,0):

the vector of unknown parameters 6 is estimated in order to obtain the best pos-
sible fit (for a given estimation criterion) of observed bond prices by theoretical

ones.

f(t,T,0) is typically a polynomial, or an exponential function of the time-to-

maturity = =T —t (for a given t) or some combination.
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c) thisis consistent with the idea that B(¢,T) and R(¢,T) are continuous and smooth

function of 7. Indeed, if R(¢t,T1) >> R(t,T1 + ¢) :

= Bond owners would probably shifts from low-yield to high-yield bonds, and
bond issuers would shift to the low-yield maturity. These changes in the sup-

ply and demand will determine a reduction of the gap driving R(¢,71) close to

R(t,T1 + ¢).
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2.2.2 Bootstrapping technique

[J Several bond markets issue and trade a very small number of zero-coupon bonds.

Usually, such zero-coupon bonds have a very short maturity.

] If we want to determine market zero-coupon vyields for longer maturities, we have
to extract information from the prices of traded coupon bonds. In some (not
alll) markets we have the possibility to construct some longer-term zero-coupon

bonds by forming portfolios of traded coupon bonds.

[J Market prices of these "synthetical’ zero-coupon bonds and the associated zero-

coupon vyields can then be derived. Let us start from a simple example.
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Example - Consider a bond market at date ¢t where two bullet bonds are traded.
A ZCB expiring in one year and selling for CB(t,t + 1) = 97 and a coupon
bond, with an annual coupon rate of 5%, expiring in two years and selling for

CB(t,t + 2) = 95. Both have annual payments and face value of 100.

from the traded ZCB : 97 = 100 x B(t,t+ 1) = B(t,t + 1) = 0.97 and thus

R(t,t+ 1) = —InB(t,t + 1) = 0.03046.

from the traded CB :
95 = 5x B(t,t+ 1)+ 105 x B(t,t+ 2)

= 5x0.974+105x B(t,t+2) = B(t,t+2) =0.8586,
and thus R(t,t+2) = —2In B(t,t + 2) = 0.07623.
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[l From the last relation we observe that:

1 5

we can construct a ZCB with residual maturity of 2 years as a portfolio of 1/105

units of CB(t,t 4+ 2) (sell) and —5/105 units of the 1-year ZCB (buy).

J This simple example considers only 2 bonds associated to the maturities t + 1

and t+2. This setting can easily be generalized to more periods and more assets.
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] Let us assume to have, at date ¢, M coupon bonds with:

— regularly increasing maturities {t + 1,t 4+ 2,...,t + M}, respectively,

— coupon payments at each period

— and occurring at the same dates.

O In that case, we can construct recursively (as in the example!) the market
discount factors B(t,t+1),B(t,t+2),...,B(t,t 4+ M) and the associated yield to

maturities R(t,t+ 1), R(t,t +2),..., R(t,t + M).

[J We are able to construct a finite set of points of the yield curve, and up to t+ M.

This methodology is called bootstrapping or yield curve stripping.
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[0 The yield curve stripping also applies to the case where the maturity dates of

the M bonds are not all different and regularly increasing as in the previous case.

[J Let us consider M bonds having at most M different payment dates. Let us
denote the payment of the coupon bond ¢ € {1,...,M} at time ¢t 4 j, with

jeA{l,...,M}, by C;;. We can organize all these cash flows in a square matrix

C = (Ci;).

O Clearly, some of the elements C; ; may be zero (e.g., if the maturity date is before

t+ M).
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[0 Let us organize the coupon bond and ZCB prices in the vectors P = [CB(t,t +

1),...,CB(t,t + M)]' and B = [B(t,t + 1), ..., B(t,t + M)

J From the relation between coupon bond and ZCB prices we can write:

P=CxB

[0 Given this linear system based on the (M x M) square matrix C, if the bonds
payments are such that C is non-singular (e.g., at any date there is at least a

payment), then a unique solution for B exists: B = C~!P.
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[ Observe that the bootstrap method is able to construct ZCB prices, that is, spot
rates, for a finite number of maturities, while the term structure of interest rates

iS a curve.

0 What we do if we need the discount factor for an intermediate maturity (e.g., 2

years and 3 months)?

— We can interpolate ! Let us imagine to know the interest rates R(¢,T;) and
R(t,T;+1) at the maturities T; and T;41 (respectively) and let us assume that we

are interested to find the yield with maturity T; € (T3, Ti+1).
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[J By linear interpolation we have:

(T; —T;) x R(t, Ti41) + (Ti41 — 1) x R(t,T;)

R(t,T)) = e
{2 (2

we are simply drawing lines between the points (73, R(t,T;)) and (Ti4+1, R(t, T;4+1))-

0 The implementation of the bootstrap method is based on several assump-
tions/limits about the available coupon bonds we use to extract the market

discount factors (and the associated yield to maturities).
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0 Namely :

i) we cannot construct a yield R(t,T) for T'> M;

i1) we can extract only a finite number of yields and the use of interpolation

generate non smooth (spot and forward) curves;

i11) we need one payment date at each period and identical payment dates or,

more generally, the square matrix C has to be non-singular.

70



0 What happens if C is not square 7 That is, if

number M (say) of coupon bonds #

number m (say) of payment dates (i.e., maturities) 7

[J Let us assume that M > m and let us present the following example. At date ¢

we have in the market three bonds:

a) a one-year bullet bond with an annual coupon rate of 10%, face value 100

and price CB(t,t+ 1) = 100;

b) a two-year bullet bond with an annual coupon rate of 5%, face value 100

and price CB(t,t + 2) = 90;
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c) a two-year coupon bond (same payment dates as in b)) paying 58 in one year,

54 in two years, price SB(t,t + 2) = 98 (it is called serial bond).

[0 The market discount factors B(t,t+1) and B(t,t+2) (i.e., the prices of the ZCBs

with unitary face value) must satisfy the following system of the 3 equations:

100 = 110B(t,t+ 1)
90 = 5B(t,t+ 1)+ 105B(t,t 4+ 2)
98 = 58B(t,t+ 1)+ 54B(t,t+2).
[l Let us denote:
110 0 100
A= 5 105 , b= 90
58 54 98
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0 We have : rank(A : b) = rank(A) + 1 = no solution exists! It does not exist
a system (B(t,t+ 1),B(t,t + 2))’ of market discount factors, satisfying the no-

arbitrage principle, compatible with existing (at date ¢t) coupon market prices.

[0 Remember : for a given mxn matrix A, and an associated linear system Ax = b,

we have:
rank(A :b) = rank(A) =n = unique solution;
rank(A :b) = rank(A) <n = multiple solution;
rank(A :b) = rank(A)+ 1 = no solution.

[J If we consider only the first two assets:

_[110 o0 _ [ 100 _ _
A_[ : 105] , b_[ 90] = B(t,t+1) =0.9091, B(t,t+2)=0.8139.
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[J If we consider only the last two assets:

| 5 105 | 90 . .
A_[58 54], b_[98] = B(t,t+1) =0.9330, B(t,t+2)=0.8127.

] If we take the first solution as “correct”, the no-arbitrage price of the serial bond

should be:

58 x 0.9091 + 54 x 0.8139 = 96.98 < 98.00,

[0 The market price at date t is “too expansive” (w.r.t. to the no-arbitrage prin-
ciple). In other words, the serial bond is mispriced relative to the two coupon
bonds: we can exploit this arbitrage opportunity selling the expensive serial

bond and buying a portfolio of the two bullet bonds that replicate the serial one.

74



] What we typically observe in bond markets is that, at a given date ¢, the number
of bond prices M is much smaller than that of payment dates m (say) : M << m.
It happens in particular for long maturities where, typically, the number of bonds

is small.

O Thus : rank(A :b) = rank(A) < m = we have multiple solutions.

[J Many set of discount factors can be compatible both with observed prices and

no-arbitrage principle.

[0 Moreover, several entries of C are equal to zero, because of bonds with (many)

different payment dates.
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[0 One can (try to) choose the data set such that cash flows are at the same points

in time and the matrix C is not entirely full of zeros.

[J Nevertheless, the regression still has big problems!

[0 There are as many parameters as cash flow dates, and there is nothing to smooth

the discount curve found from the regression.
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[J Thus, the discount factors of similar maturity can be very different.

J An alternative and preferable methodology would be to estimate a parametrized

smooth yield curve from the market rates (coupon bond prices).

[J Indeed, in the next sections we focus on cubic splines, cubic B-splines and on
the Exponential-Polynomial class of curves (Nelson and Siegel (1987) family and

on the Svensson (1994) generalization).
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2.2.3 Splines (see Munk (2008) and Filipovic (2009))

2.2.3.1 Cubic splines

J In this and in the following sections we will consider methods to estimate the
entire discount function T — B(t,T) (up to some large T). For ease of ex-
position we will adopt the notation B(t,t 4+ h) with A > 0. A similar notation is

adopted for yields and forward rates: R(t,t+ h) and R(t,t+ m,t+ 7+ h).

[J We will assume that the discount function be described by a parametric function
with parameter values estimated in such a way to get a close match between
the observed and theoretical bond prices.
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0 The methodology presented in this section is a version of the cubic splines ap-
proach introduced by McCulloch (1971) and then modified by McCulloch (1975)

and Litzenberger and Rolfo (1984).

[J Let us imagine to observe, at date ¢, M bonds with maturity dates 77 < Tr <
... < Ty. Now, we divide the time-to-maturity axis into subintervals defined by

the knot points 0 = hg < h1 < ... < hy =Ty — t.

[0 A spline approximation of the discount function B(¢,t+ h) is based on an expres-

sion like:
k—1
B(t,t+h) = G;(h)I;(h)
j=0
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O The G;(h)'s are basis functions, and the [;(h) are step functions:

1 if h > h;
Li(h) =
O otherwise.
J In other words, we have:
B(t,t—l— h) = Go(h) for h € [ho,hl),

= Go(h) -+ Gl(h) for h € [h17 h2) )

=  Go(h) +Gi(h) +...+G,(h) for he[hjhjt1),

etc.
[0 We require the G;(h)’s functions to be continuous and twice differentiable and

ensuring a smooth transition in the knot points h;.
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0 A polynomial spline is a spline with polynomials as basis functions. Let us

consider a cubic spline where:
Gj(h) = a; + Bi(h — hj) + vj(h — hj)? + §;(h — h))*,
where «;, Bj,v; and ¢; are constants.
0 For h € [0,h1), we have:
B(t,t + h) = ao + Boh + yoh? + doh3,
since B(t,t) =1 = ap=1.
O For h € [h1,hs), we have:
B(t,t + h) = (1 4+ Boh + voh? + doh3>)
+ [e1 + B1(h — h1) +71(h — h1)? 4+ 61(h — h1)3].
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[J To guarantee a smooth transition from the first to the second subinterval, that

is at the knot h = hy, we impose:

imy_p B(t,t+h) = lim,_,+ B(t,t+h) = B(t,t + h1)
limy_p B'(t,t+h) = lim,_,: B'(t,t + h) < o
limy_p B"(t,t+h) = lim,_,+ B"(t,t+h) < co.

[J The first condition ensures the continuity at the point h = hi. The second
condition guarantee that B(t,t+ h) has no kink at h; and the second one impose

a further degree of smoothness around h;.

[0 These three conditions imply (exercise!) : a1 = 0, 81 = 0 and ~; = 0. Iterating

for the other knots, we similarly find aj =8, =v; =0 for all j =1,...,k— 1.
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0 The cubic spline is therefore reduced to:

k—1
B(t,t + h) = (1 + Boh + y0h? + 6oh®) + Y 5;(h — hj)>L;(h).
j=1
[ Let t1,to,...,tn denote the time distance between the date ¢ and each of the

payment dates in the set of all payment dates of the bonds we observe. Let C;;

denote the payment of bond ¢ in ¢; periods.

0 From the no-arbitrage relation linking coupon and zero-coupon bond prices we

have:

j=1
where CB;(t,t+ h;) = observed market price,

and B(t,t+t;) = unknown discount factors.
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[J Since not all ZCBs B(t,t—l—tj) involved in the relation are traded in the market,

we will allow for a deviation &!” so that:

CBi(t,t+hi) = Ci;B(t,t+1t;) e

j=1
[0 We assume that st(i) ~ IIN(0,0%) for all 4, and that €ti)l5§i)k for all i # j and

k c R.

[J We write, for any ¢ € {1,..., M}, the following regression:

m k-1
CBi(t,t+hi) =) Cij {(1 + Bot; + yot? + 6ot3) + Y Gty — h£)3]1€(tj)} + e

j=1 (=1
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[J Given the observed prices and payment schemes of the M bonds, the k£ + 2 pa-
rameters 6 = (80,0, %0,01,...,0_1)" can be estimated by Ordinary Least Squares

(OLS).

[J The estimated market discount function is therefore given by:
k—1
B(t,t