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Exercise N◦ 01.

i) A Repurchase Agreement (Repo) is an agreement to sell (today) some securities to another
party and buy them back at a fixed future date and for a fixed amount. The price at which
the security is bought back is greater than the selling price and the difference implies an
interest called Repo Rate. The repo can be seen as a collateralized loan and the advantage
of this borrowing of funds is that the applied (Repo) rate is less than the cost of banking
financing.

A Reverse Repo is the opposite transaction, namely, it is the purchase of the security for cash
with the agreement to sell it back to the original owner at a predetermined price, determined,
once again, by the Repo Rate. It is the same repurchase agreement from the repo dealer’s
viewpoint, not the trader’s.

ii) The return on capital of the trader is:

PT − Pt −
1

12
× repo rate × (Pt − haircut)

haircut

=
99.01− 98.5− 1

12
× 0.05 × (98.5− 0.8)

0.8
= 0.13 .

iii) The profit Π(t, T ) is:

Pt ×
(

1 +
1

52
× repo rate

)
− PT = 99.40 ×

(
1 +

1

52
× 0.06

)
− 99.48 = 0.0347 .

Exercise N◦ 02.

i) Let us consider an incomplete market without redundant assets (k = rank(S′) = d+ 1 < N), a
payoff y ∈ M(S) and the associated system S′ϕ = y. Given that rank(S′) = d + 1 we have that
(SS′)−1 exists and the right inverse of S is well defined : R(S) = S′(SS′)−1. This means that we
also have (R(S))′ = (SS′)−1S = L(S′). Thus, the replicating strategy is ϕ = L(S′)y = (SS′)−1Sy
which a solution of the original system being y ∈M(S).

Now, the price of the payoff y ∈ M(S) is the value of the replicating portfolio an therefore q(y) =
S(0)′ϕ = S(0)′L(S′)y = S(0)′(SS′)−1Sy = y′R(S)S(0) and the pricing formula is proved.

ii) We have an incomplete market with redundant assets (k < d+ 1, k < N). Let us denote with S̄
the (k,N) payoff matrix of the no redundant assets and with S̄(0) the vector of these k asset prices.
Given that rank(S′) = k we have that (S̄S̄′)−1 exists and the right inverse of S̄ is well defined :
R(S̄) = S̄′(S̄S̄′)−1. This means that we also have (R(S̄))′ = (S̄S̄′)−1S̄ = L(S̄′). Following the same
steps as above, we find q(y) = y′R(S̄) S̄(0) = S̄(0)′ L(S̄ ′) y and the pricing formula is proved.
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Exercise N◦ 03.

Given that Mt,t+1 is exponential-affine in εt+1 (i.e. xt+1) and that the conditional Laplace transform
of xt+1 is exponential-affine in the conditioning variable (xt) we suggest that the ZCB pricing
formula at date t be an exponential-affine function of xt and then “we check if it works”. We
proceed in the following way:

a) We suggest B(t, t + h) = exp(c′hXt + dh) and we (equivalently) rewrite the pricing formula
in terms of the payoff B(t+ 1, t+ h) = exp(c′h−1Xt+1 + dh−1):

B(t, t+ h) = exp(c′hXt + dh)

= Et[Mt,t+1 · · ·Mt+h−1,t+h]

= Et[Mt,t+1B(t+ 1, t+ h)]

= Et

[
exp

(
−β − α′Xt + Γt εt+1 − 1

2 Γ2
t

)
exp(c′h−1Xt+1 + dh−1)

]
,

b) we do the algebra (calculating the conditional Laplace transform) obtaining:

B(t, t+ h)

= exp(ch
′Xt + dh)

= exp
[
−β − α′Xt − 1

2Γ2
t + dh−1

]
× Et[exp

(
Γtεt+1 + c′h−1Xt+1

)
]

= exp
[
−β − α′Xt − 1

2Γ2
t + dh−1 + c′h−1(ΦXt + ν̃)

]
× Et[exp (Γt + σc1,h−1)εt+1)]

= exp [(−α+ Φ′ch−1 + c1,h−1σγ)′Xt

+ (−β + c1,h−1ν + 1
2c

2
1,h−1σ

2 + γoc1,h−1σ + dh−1)
]
,

c) and by identifying the coefficients we find the recursive relations for ch and dh characterizing
the pricing formula B(t, t+ h) = exp(c′hXt + dh).

Now, the last elements we need to completely determine the pricing formula are the starting con-
ditions for ch and dh. We proceed as follows:

given that, by definition of ZCB, we have B(t, t) = 1, then

exp(c′0Xt + d0) = 1 ⇐⇒ (c′0Xt + d0) = 0 ∀ Xt ⇐⇒ c0 = 0 , d0 = 0 .

We can also equivalently write:

given that, by definition of ZCB, we have B(t, t+ 1) = exp(− rt), then

exp(c′1Xt + d1) = exp(− rt) ⇐⇒ (c′1Xt + d1) = −rt ∀ Xt ⇐⇒ c1 = −α , d1 = −β .
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Exercise N◦ 04 [1 point].

Give the information we obtain from the market, we have that the one-quarter discount factor (i.e.,
the zero-coupon bond price for a unitary face value) is B(0, 0.25) = 0.9880. In addition, given the
representation of the coupon bond price as a portfolio of zero-coupon bonds we can write:

100.960 = 0.9880 × 0.025

4
× 100 +B(0, 0.5) × 100 × (1 + 0.025/4) ,

we easily obtain B(0, 0.5) = 0.9972. With these discount factors in hand, we can calculate the price
of the floating rate bond thanks to the following formula:

CBFR(0, 0.5) = 100 + s× 100× [B(0, 0.25) +B(0, 0.5)]

= 100 +
0.015

4
× 100× (0.9880 + 0.9972) = 100.744 .

Exercise N◦ 05.

The value of the swap is given by:

Vswap(0, 1.5; 5.52%)

= 100−

 1.5∑
j=0.5

0.0552

2
× 100 × B(0, j) + 100 × B(0, 1.5)


= 100−

[
0.0552

2
× 100 × 0.945 +

0.0552

2
× 100 × 0.990 +

(
0.0552

2
+ 1

)
× 100 × 0.915

]
= 100− 2.6082− 2.7324− 94.0254 = 0.634 ,

and therefore the swap rate c = 5.52% is not the correct one given that, at the inception of the
contract, the swap value has to be equal to zero. The correct swap rate is:

c = 2 × 1−B(0, Tn)
n∑

j=1

B(0, Tj)

= 2 × 1− 0.915

0.945 + 0.990 + 0.915
= 0, 05965 .
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Exercise N◦ 06.

First, we need to solve for the default probability curves for the individual credits. Let D(t) be
the risk-free discount factor from time t to the present. Assume a common recovery value of R for
each credit. Set up the CDS pricing equation:

(buyer) s̄

5∑
t=1

(1− P (t))D(t) =

5∑
t=1

(P (t)− P (t− 1))(1−R)(1 + c)D(t) (seller)

Using the constant hazard rate model, we plug in P (t) = 1− exp[−λt], and solve () numerically for
λ given the fair spread s̄.

Now define L(t) to be the cumulative losses on the pool up to time t. Then the bond notional at
time t is:

N(t) = 1−max{L(t)− a, 0} = min{1, 1 + a− L(t)}.

The price of the bond is the expectation of its discounted interest and principal cash-flows

c ·
T∑
t=1

N(t− 1)D(t) +N(T ) ·D(T ),

with T = 5. To complete the pricing, we need an expression for the expectation of N(t), for
t = 1, . . . , T . Let ρ be the common asset correlation across the credits in the pool. Since the
pool is large and homogeneous, we may model using the fine-grained limit. Thus L(t) is equal in
distribution to

(1−R) · Φ
(
α(t)−√ρZ
√

1− ρ

)
,

where Z is standard normal distributed, and α(t) = Φ−1(P (t)). Let φ denote the p.d.f. for the
standard normal distribution. The expectation is then

lllEN(t) = E min{1, 1 + a− L(t)}

=

∫ ∞
−∞

dzφ(z) min

{
1, 1 + a− (1−R)Φ

(
α(t)−√ρz
√

1− ρ

)}
.

In order to simplify the integral, we solve

(1−R) · Φ
(
α(t)−√ρz
√

1− ρ

)
= a,

for z. The solution is given by

z? =
α(t)−

√
1− ρΦ−1(a/(1−R))
√
ρ

.

So we have

(1−R) · Φ
(
α(t)−√ρz
√

1− ρ

)
≥ a, if z ≤ z?,
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and vice-versa. We can then simplify the integral

EN(t) =

∫ z?

−∞
dzφ(z)

[
1 + a− (1−R)Φ

(
α(t)−√ρz
√

1− ρ

)]
+

∫ ∞
z?

dzφ(z)

= (1 + a)Φ(z?) + (1− Φ(z?))− (1−R)

∫ z?

−∞
dzφ(z)Φ

(
α(t)−√ρz
√

1− ρ

)
.

The last term must be evaluated numerically.
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